Application of the theory of KM₂O-Langevin equations to the non-linear prediction problem for the one-dimensional strictly stationary time series

Dedicated to Professor Kiyoshi Ito on his seventy-seven birthday

By Yasunori OKABE and Takashi OOTSUKA

(Received Feb. 5, 1993) (Revised Aug. 16, 1993)

§1. Introduction.

We are inspired by Masani-Wiener's work ([4]) of the non-linear prediction problem of a one-dimensional discrete time strictly stationary process. The purpose of the present paper is to give computable algorithms for the non-linear predictor by applying the theory of KM₂O-Langevin equations.

We have already applied in [7] the theory of KM_2O -Langevin equations to the linear prediction problem for the multi-dimensional weakly stationary time series and given a refinement of Wiener-Masani's work in [13], [14] and [3] by obtaining computable algorithms for the linear predictor. The results in [7] play supplementary but useful roles in the present approach to the non-linear problem, as will be explained.

Let $X = (X(n); n \in \mathbb{Z})$ be a real-valued strictly stationary time series on a probability space (Ω, \mathcal{B}, P) with mean zero. We shall impose the following two hypotheses which are the same as in [4]:

(H.1) X is essentially bounded, i.e., there exists a positive constant C>0 such that $|X(n)(\boldsymbol{\omega})| \leq C$ for any $n \in \mathbb{Z}$ and almost all $\boldsymbol{\omega} \in \Omega$;

(H.2) For any distinct integers n_1, n_2, \dots, n_k $(k \in \mathbb{N})$ the spectrum of the distribution function of the k-dimensional random variable ${}^{t}(X(n_1), X(n_2), \dots, X(n_k))$ has positive Lebesgue measure.

The non-linear predictor $\hat{X}(\nu)$ of the future $X(\nu)$, $\nu > 0$, on the basis of the present and past X(l), $l \leq 0$, is defined by

$$\widehat{X}(\nu) = E(X(\nu) | \sigma(X(l); l \leq 0)).$$

Masani and Wiener ([4]) have obtained a representation for the non-linear

This research was partially supported by Grant-in-Aid for Science Research No. 03452011, the Ministry of Education, Science and Culture, Japan.