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\S 1. Introduction.

In the first part of this paper, we study operators $f(H)$ and $e^{-itH}f(H)$ in
$L^{p}(R^{d})$ , where $H=-\Delta+V(x)$ is a Schr\"odinger operator defined primarily as a
self-adjoint operator in $L^{2}(R^{d})$ . For $H_{0}=-\Delta$ , mapping properties of $f(H_{0})$ be-
tween $L^{p}$-spaces and norm estimates for $e^{-itH_{0}}f(H_{0})$ follow from the theory of
Fourier multipliers. One of our goals is to extend these results to a fairly
large class of Schr\"odinger operators $H=H_{0}+V(x)$ . To attain this goal we use
several tools, including properties of the Schr\"odinger semigroup: $e^{-tH}$ , the
spaces $l^{p}(L^{q})$ which are sometimes called amalgams of $l^{p}$ and $L^{q}$ , commutator
estimates, and a result (Theorem 2.4) which can be viewed as a version of the
Beurling-Carlson theorem on Fourier multipliers (see [BTW]).

Throughout this paper we suppose the potential $V(x)$ satisfies the following
condition:

ASSUMPTION (A). $V$ is real-valued function on $R^{d}$ , and it is decomposed
as $V(x)=V_{+}(x)-V_{-}(x)$ such that $V_{\pm}\geqq 0,$ $V_{+}\in K_{d}^{1oc}$ and $V_{-}\in K_{d}$ , where $K_{tl}$ is
the Kato class of potentials.

For the sake of completeness, we recall the definitions of $K_{f}$
( and $K_{d}^{1oc}$ (cf.

Simon [$S$ : Section A2] for the detail):

DEFINITION. $V\in K_{d}$ , if:

For $d\geqq 3$ , $\lim_{rarrow 0}\sup_{R^{d}x\in}\int_{|x-y|\leqq r}\frac{|V(y)|}{|x-y|^{d-2}}dy=0$ ;

For $d=2$ , $1 \grave{1}m\sup_{Rrarrow 0x\in d}\int_{|x-y|\leqq r}\log\{|x-y|^{-1}\}|V(y)|dy=0$ ;

For $d=1$ , $\sup_{x\in R^{d}}\int_{|x-y|\subseteq 1}|V(y)|dy<\infty$ .


