Asymptotic expansions of the solutions to a class of quasilinear hyperbolic initial value problems

By Atsushi Yoshikawa

(Received May 27, 1992)
(Revised July 12, 1993)

0. Introduction.

Let us consider the initial value problem related to the following quasilinear positive symmetric strictly hyperbolic system:

$$
\begin{equation*}
A_{0}(u) \frac{\partial}{\partial t} u+\sum_{\nu=1}^{n} A_{\nu}(u) \frac{\partial}{\partial x_{\nu}} u+B(u) u=0 . \tag{0.1}
\end{equation*}
$$

Thus, $A_{0}(u), \cdots, A_{n}(u)$ are $m \times m$ symmetric matrices depending smoothly on $u \in \boldsymbol{R}^{m}$, and $A_{0}(u)$ is positive definite while $B(u)$ may be any $m \times m$ smooth matrix. Strict hyperbolicity means that, for any $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \neq 0$, the matrix

$$
\begin{equation*}
M(u, \xi)=\sum_{\nu=1}^{n} \xi_{\nu} A_{0}(u)^{-1} A_{\nu}(u) \tag{0.2}
\end{equation*}
$$

has m distinct real eigenvalues $p_{1}(u, \xi), \cdots, p_{m}(u, \xi)$. We assume some of these eigenvalues actually depend on u because of quasi-linearity of the system (0.1).

We are interested in how hyperbolicity and non-linearity interact. To begin with, we seek an analogy of the oscillatory initial value problem which is basic in linear hyperbolic equations.

We choose as the initial data an m-vector of the form

$$
\begin{equation*}
u=\lambda^{-1} g(\lambda x \cdot \eta, x) \quad \text { at } \quad t=0, \tag{0.3}
\end{equation*}
$$

where $\lambda>0$ is a large parameter, $x \cdot \eta$ the scalar product of x and $\eta \in \boldsymbol{R}^{n}, \eta$ being a fixed n-vector $\neq 0$, and $g(s, x)$ is a given m-vector valued smooth function with compact support in s, x, i.e., $g \in C_{0}^{\infty}\left(\boldsymbol{R}^{n+1}\right)^{m}$.

The following is a convenient assumption on the initial data:

$$
\begin{equation*}
\int_{R} g(s, x) d s=0 . \tag{0.4}
\end{equation*}
$$

We may rewrite (0.3) as
This research was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture, Japanese Government, No. 03640169.

