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1. Introduction.

The forward Cauchy problem for the operator with real coefficients $Hu(t, x)$

$=\partial_{t}u(t, x)+a(x)\partial_{x}^{2}u(t, x)+b(x)\partial_{x}u(t, x)+c(x)u(t, x)$ with the datum on a line $r=0$

is $L^{2}$ and $H^{\infty}$-wellposed if and only if $a(x)\leqq 0$ .
We consider the same problem for the operator with real coefficients

(1.1) Au $(t, x)=\partial_{t}u(t, x)+\partial_{x}^{3}u(t, x)+a(x)\partial_{x}^{2}u(t, x)+b(x)\partial_{x}u(t, x)+c(x)u(t, x)$ .

which is obtained by adding the dispersive term $\partial_{x}^{3}u(t, x)$ to $Hu(fx)$ . Our
problem is under which conditions on the coefficient $a(x)$ the forward Cauchy
problem for Au $(t, x)$ is $L^{2}$ or $H^{\infty}$-wellposed.

Similar problems arise for the Schr\"odinger type operator

$Su(t, x)=\partial_{t}u(t, x)+i\partial_{x}^{2}u(t, x)+A(x)\partial_{x}u(t, x)+B(x)u(t, x)$ .

In this case, the following condition on the imaginary part of $A(x):\mathfrak{J}A(x)$ is
necessary and sufficient for the $L^{2}[resp$ . $H^{\infty}J$-wellposedness;

There exists some constant $C$ satisfying

$| \int_{x}^{y}\mathfrak{J}A(x)dx|\leqq C$ $[ resp.|\int_{x}^{y}3A(x)dx|\leqq C\log(|x-y|+2)\rfloor$

for any $x,$ $y\in R$ ,

while for the operator $\partial_{t}u(t, x)+A(x)\partial_{x}u(t, x)+B(x)u(t, x)$ the necessary and
sufficient condition is $\mathfrak{J}A(x)=0$ (see W. Ichinose [1] and [2], S. Mizohata [4]

and J. Takeuchi [6] $)$ .
In the following, we consider only real-valued functions and operators with

real coefficients with some obvious exceptions.
NOW we formulate the forward Cauchy problem for the operator $A$ defined

by (1.1):

For the given datum $g(x)$ and right-hand side $f(t, x)$ of the equation, find
a solution $u(t, x)$ satisfying


