On the wellposed Cauchy problem for some dispersive equations

By Shigeo TARAMA

(Received April 15, 1992)
(Revised June 23, 1993)

1. Introduction.

The forward Cauchy problem for the operator with real coefficients $H u(t, x)$ $=\partial_{t} u(t, x)+a(x) \partial_{x}^{2} u(t, x)+b(x) \partial_{x} u(t, x)+c(x) u(t, x)$ with the datum on a line $t=0$ is L^{2} and H^{∞}-wellposed if and only if $a(x) \leqq 0$.

We consider the same problem for the operator with real coefficients

$$
\begin{equation*}
A u(t, x)=\partial_{t} u(t, x)+\partial_{x}^{3} u(t, x)+a(x) \partial_{x}^{2} u(t, x)+b(x) \partial_{x} u(t, x)+c(x) u(t, x) . \tag{1.1}
\end{equation*}
$$

which is obtained by adding the dispersive term $\partial_{x}^{3} u(t, x)$ to $H u(t, x)$. Our problem is under which conditions on the coefficient $a(x)$ the forward Cauchy problem for $A u(t, x)$ is L^{2} or H^{∞}-wellposed.

Similar problems arise for the Schrödinger type operator

$$
S u(t, x)=\partial_{t} u(t, x)+i \partial_{x}^{2} u(t, x)+A(x) \partial_{x} u(t, x)+B(x) u(t, x) .
$$

In this case, the following condition on the imaginary part of $A(x): \mathfrak{S} A(x)$ is necessary and sufficient for the $L^{2}\left[\right.$ resp. $\left.H^{\infty}\right]$-wellposedness;

There exists some constant C satisfying

$$
\begin{aligned}
& \left|\int_{x}^{y} \Im A(x) d x\right| \leqq C \quad\left[\text { resp. }\left|\int_{x}^{y} \Im A(x) d x\right| \leqq C \log (|x-y|+2)\right] \\
& \quad \text { for any } \quad x, y \in \boldsymbol{R},
\end{aligned}
$$

while for the operator $\partial_{t} u(t, x)+A(x) \partial_{x} u(t, x)+B(x) u(t, x)$ the necessary and sufficient condition is $\mathfrak{J} A(x)=0$ (see W. Ichinose [1] and [2], S. Mizohata [4] and J. Takeuchi [6]).

In the following, we consider only real-valued functions and operators with real coefficients with some obvious exceptions.

Now we formulate the forward Cauchy problem for the operator A defined by (1.1):

For the given datum $g(x)$ and right-hand side $f(t, x)$ of the equation, find a solution $u(t, x)$ satisfying

