Braid relations, meta-abelianizations and the symbols $\{p,-1\}$ in $K_{2}(2, \boldsymbol{Z}[1 / p])$

By Jun Morita

(Received Oct. 3, 1991)
(Revised June 10, 1993)

1. Introduction.

In [5], a finite presentation of $\operatorname{St}(2, \boldsymbol{Z}[1 / p])$ was given for a prime number p, where two braid relations appeared. The purpose of this paper is to study the group structures of $\operatorname{St}(2, \boldsymbol{Z}[1 / p])$ and $K_{2}(2, \boldsymbol{Z}[1 / p])$. To do this, first we will look at the braid groups (cf. [1]). Then we obtain the following.

$$
\operatorname{St}\left(2, \boldsymbol{Z}\left[\frac{1}{p}\right]\right)^{m a b} \cong \begin{cases}Z_{3} \ltimes\left(Z_{2} \times Z_{2}\right) & \text { if } p=2 ; \tag{1}\\ Z_{8} \ltimes Z_{3} & \text { if } p=3 ; \\ Z_{p^{2}-1} \ltimes(Z \times Z) & \text { otherwise } .\end{cases}
$$

(2) If $p \neq 2,3,5,11$, then $\{p,-1\}^{2} \neq 1$ in $K_{2}(2, \boldsymbol{Z}[1 / p])$.
(3) If $p \neq 2,3,5,11$, then $K_{2}(2, \boldsymbol{Z}[1 / p]) \neq \boldsymbol{Z} \times Z_{p-1}$.

It is already known that

$$
\begin{equation*}
K_{2}\left(2, \boldsymbol{Z}_{S}\right) \cong Z \times \prod_{p \in S} Z_{p-1} \tag{*}
\end{equation*}
$$

if S is one of $\{$ the first n successive prime numbers $\}$ with $n \geqq 1,\{3\},\{2,5\}$, $\{2,3,7\},\{2,3,11\},\{2,3,5,11\},\{2,3,13\},\{2,3,7,13\},\{2,3,17\}$, and $\{2,3,5,19\}$, where $\boldsymbol{Z}_{s}=\boldsymbol{Z}[1 / p]_{p \in S}(\mathrm{cf} .[4],[5])$. One might expect that (*) holds for every set S of prime numbers. But the above (3) tells us that (*) is not true in general.

Here, we fix our notation as follows. Let Z be the ring of rational integers, \boldsymbol{Q} the field of rational numbers, and \boldsymbol{R} the field of real numbers. For elements x, y in a group, we set $x^{y}=y x y^{-1}$. For subgroups H_{1}, H_{2} of a group G we denote by [H_{1}, H_{2}] the subgroup of G generated by $\left[h_{1}, h_{2}\right]=h_{1} h_{2} h_{1}^{-1} h_{2}^{-1}$ for all $h_{1} \in H_{1}, h_{2} \in H_{2}$. Then, put $G^{\prime}=[G, G], G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right], G^{a b}=G / G^{\prime}, G^{m a b}=G / G^{\prime \prime}$ and $G^{\prime a b}=G^{\prime} / G^{\prime \prime}$. We use Z_{m} for the cyclic group of order m, and Z for Z_{∞}. If a group H acts on another group K, the semi-direct product of H and K is denoted by $H \ltimes K$. And 〈generators|relations〉 means a group presentation as usual.

