J. Math. Soc. Japan Vol. 47, No. 1, 1995

Braid relations, meta-abelianizations and the symbols $\{p, -1\}$ in $K_2(2, \mathbb{Z}[1/p])$

By Jun MORITA

(Received Oct. 3, 1991) (Revised June 10, 1993)

1. Introduction.

In [5], a finite presentation of St(2, $\mathbb{Z}[1/p]$) was given for a prime number p, where two braid relations appeared. The purpose of this paper is to study the group structures of St(2, $\mathbb{Z}[1/p]$) and $K_2(2, \mathbb{Z}[1/p])$. To do this, first we will look at the braid groups (cf. [1]). Then we obtain the following.

(1)
$$\operatorname{St}\left(2, \, \mathbb{Z}\left[\frac{1}{p}\right]\right)^{m \, a \, b} \cong \begin{cases} Z_{3} \ltimes (Z_{2} \times Z_{2}) & \text{if } p = 2; \\ Z_{8} \ltimes Z_{3} & \text{if } p = 3; \\ Z_{p^{2}-1} \ltimes (Z \times Z) & \text{otherwise.} \end{cases}$$

(2) If $p \neq 2$, 3, 5, 11, then $\{p, -1\}^2 \neq 1$ in $K_2(2, \mathbb{Z}[1/p])$. (3) If $p \neq 2$, 3, 5, 11, then $K_2(2, \mathbb{Z}[1/p]) \not\equiv \mathbb{Z} \times \mathbb{Z}_{p-1}$.

It is already known that

(*)
$$K_2(2, \mathbf{Z}_S) \cong Z \times \prod_{p \in S} Z_{p-1}$$

if S is one of {the first n successive prime numbers} with $n \ge 1$, {3}, {2, 5}, {2, 3, 7}, {2, 3, 11}, {2, 3, 5, 11}, {2, 3, 13}, {2, 3, 7, 13}, {2, 3, 17}, and {2, 3, 5, 19}, where $Z_S = Z[1/p]_{p \in S}$ (cf. [4], [5]). One might expect that (*) holds for every set S of prime numbers. But the above (3) tells us that (*) is not true in general.

Here, we fix our notation as follows. Let Z be the ring of rational integers, Q the field of rational numbers, and R the field of real numbers. For elements x, y in a group, we set $x^y = yxy^{-1}$. For subgroups H_1 , H_2 of a group G we denote by $[H_1, H_2]$ the subgroup of G generated by $[h_1, h_2] = h_1 h_2 h_1^{-1} h_2^{-1}$ for all $h_1 \in H_1$, $h_2 \in H_2$. Then, put G' = [G, G], G'' = [G', G'], $G^{ab} = G/G'$, $G^{mab} = G/G''$ and $G'^{ab} = G'/G''$. We use Z_m for the cyclic group of order m, and Z for Z_∞ . If a group H acts on another group K, the semi-direct product of H and K is denoted by $H \ltimes K$. And $\langle generators | relations \rangle$ means a group presentation as usual.