A theorem of Hardy-Littlewood for harmonic functions satisfying Hölder's condition

By Toshihiro KISO, Yoshihiro MIZUTA and Tetsu SHIMOMURA

(Received May 31, 1993)

1. Introduction.

Our aim in this paper is to give an extension of a result of Hardy-Littlewood [2, Theorems 40 and 41] for holomorphic functions on the unit disc.

Let B(x, r) denote the open ball centered at x with radius r. We denote by **B** the unit ball B(0, 1) of \mathbb{R}^n , and by d(x) the distance of x from the boundary ∂B , that is, d(x)=1-|x|.

An easy modification of the proof of [1, Theorem 5.1] deduces the following results (see also [3, Theorem 15.8]).

THEOREM A. Let u be a harmonic function on **B** and $0 < \alpha \leq 1$. Then u satisfies

$$|\nabla u(x)| \leq M d(x)^{\alpha-1}$$
 for any $x \in \mathbf{B}$

if and only if

(1) $|u(x)-u(y)| \leq M |x-y|^{\alpha}$ for any $x \in B$ and $y \in B$,

where ∇ denotes the gradient.

If u satisfies (1), then we say that u satisfies Hölder's condition of exponent α in **B**.

In this paper let M denote various constants, whose value may change from one occurrence to the next.

THEOREM B. Let u be a harmonic function on B. Then u satisfies

 $|\nabla u(x)| \leq M d(x)^{-1}$ for any $x \in B$

if and only if $u \in BMO(B)$, that is,

$$\frac{1}{|B|} \int_{B} \left| u(y) - \frac{1}{|B|} \int_{B} u(z) dz \right| dy \leq M$$

for any open ball $B = B(x, r) \subseteq B$.