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1. Introduction.

Our aim in this paper is to give an extension of a result of Hardy-Little-
wood [2, Theorems 40 and 41] for holomorphic functions on the unit disc.

Let $B(x, r)$ denote the open ball centered at $x$ with radius $r$ . We denote
by $B$ the unit ball $B(O, 1)$ of $R^{n}$ , and by $d(x)$ the distance of $x$ from the
boundary $\partial B$, that is, $d(x)=1-|x|$ .

An easy modification of the proof of [1, Theorem 5.1] deduces the follow-
ing results (see also [3, Theorem 15.8]).

THEOREM A. Let $u$ be a harmonic function on $B$ and $0<\alpha\leqq 1$ . Then $u$

satisfies
$|\nabla u(x)|\leqq Md(x)^{\alpha-1}$ for any $x\in B$

if and only if
(1) $|u(x)-u(y)|\leqq M|x-y|^{a}$ for any $x\in B$ and $y\in B$ ,

where $\nabla$ denotes the gradient.

If $u$ satisfies (1), then we say that $u$ satisfies H\"older’s condition of exponent
a in $B$ .

In this paper let $M$ denote various constants, whose value may change
from one occurrence to the next.

THEOREM B. Let $u$ be a harmonic function on B. Then $u$ satisfies
$|\nabla u(x)|\leqq Md(x)^{-1}$ for any $x\in B$

if and only if $u\in BMO(B)$ , that is,

$\frac{1}{|B|}\int_{B}|u(y)-\frac{1}{|B|}\int_{B}u(z)dz|dy$ $ $M$

for any open ball $B=B(x, r)_{-}B$ .


