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\S 0. Introduction.

Let an algebraic torus $T$ of dimension $n$ act on a vector space $V$ of dimen-
sion $N(N>n)$ via $N$ characters $\chi_{1}\ldots$ , $X_{N}$ of $T$ . We assume the above characters
to generate the character group $X(T)$ of $T$ and to lie on one hyperplane of
$R\otimes_{Z}X(T)$ . Let $A$ be the polynomial ring $Z[\xi_{1}$ , $\cdot$ .. , $\xi_{N}]$ , and let $L$ be the sub-
group of $Z^{N}$ consisting of the elements $a=(a_{j})_{1\leqq j\leq N}$ such that $\Sigma_{j=1}^{N}a_{j}X_{j}=0$ .
We consider the ring

$R=A/ \sum_{a\in L}A\xi_{a}$ .

Here $\sum_{a\in L}A\xi_{\alpha}$ denotes the ideal of $A$ consisting of all sums $\sum_{\alpha\in L}p_{a}\xi_{a}$ wlth
$p_{a}\in A$ where $\xi_{a}=\Pi_{a_{j}>0}\xi_{J^{j}}^{a}-\Pi_{\alpha_{J}<0}\xi_{j}^{-\alpha_{j}}$ , and only finitely many $p_{a}$ are not zero.
In this situation Gelfand and his collaborators studied generalized hypergeo-
metric systems (cf. [G], [GGZ], [GZKI], [GZK2], [GKZ]). We notice that
the idea of this kind of generalized hypergeometric systems goes back to [H]

and [KMM]. We remark that Aomoto also defined and studied generalized
hypergeometric functions by use of integral representations (cf. $[A1]-[A4]$ ).

We can find in [GZK2] the computation of the characteristic cycles of generalized
hypergeometric systems; we cannot follow this computation unless the Z-algebra
$R$ is normal, however. In [S] we defined the $b$-functions of generalized hyper-
geometric systems, and used the normality of the $Z$-algebra $R$ in order to
determine those $b$-functions. Hence the normality of the $Z$-algebra $R$ is very
important.

In this paper we assume $V$ to be an open Schubert cell of a simple com-
pact Hermitian symmetric space and $T$ to be a maximal torus of its motion
group. We remark that the generalized hypergeometric system corresponding
to the Lauricella function $F_{c}$ , and the one to the Lauricella function $F_{D}$ are
defined in this setup (cf. [GZK2]). Then we prove
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