Normality of affine toric varieties associated with Hermitian symmetric spaces

By Mutsumi SAITO
(Received Sept. 30, 1992)
(Revised May 6, 1993)

§ 0. Introduction.

Let an algebraic torus T of dimension n act on a vector space V of dimension $N(N>n)$ via N characters $\chi_{1}, \cdots, \chi_{N}$ of T. We assume the above characters to generate the character group $X(T)$ of T and to lie on one hyperplane of $\boldsymbol{R} \otimes_{\boldsymbol{z}} X(T)$. Let A be the polynomial ring $\boldsymbol{Z}\left[\xi_{1}, \cdots, \xi_{N}\right]$, and let L be the subgroup of \boldsymbol{Z}^{N} consisting of the elements $a=\left(a_{j}\right)_{1 \leq j \leqslant N}$ such that $\sum_{j=1}^{N} a_{j} \chi_{j}=0$. We consider the ring

$$
R=A / \sum_{a \in L} A \xi_{a}
$$

Here $\Sigma_{a \in L} A \xi_{a}$ denotes the ideal of A consisting of all sums $\Sigma_{a \in L} p_{a} \xi_{a}$ with $p_{a} \in A$ where $\xi_{a}=\Pi_{a_{j}>0} \xi_{j}^{a_{j}}-\Pi_{a_{j}<0} \xi_{j}^{-a_{j}}$, and only finitely many p_{a} are not zero. In this situation Gelfand and his collaborators studied generalized hypergeometric systems (cf. [G], [GGZ], [GZK1], [GZK2], [GKZ]). We notice that the idea of this kind of generalized hypergeometric systems goes back to [H] and [KMM]. We remark that Aomoto also defined and studied generalized hypergeometric functions by use of integral representations (cf. [A1]-[A4]). We can find in [GZK2] the computation of the characteristic cycles of generalized hypergeometric systems; we cannot follow this computation unless the Z-algebra R is normal, however. In [S] we defined the b-functions of generalized hypergeometric systems, and used the normality of the Z-algebra R in order to determine those b-functions. Hence the normality of the \boldsymbol{Z}-algebra R is very important.

In this paper we assume V to be an open Schubert cell of a simple compact Hermitian symmetric space and T to be a maximal torus of its motion group. We remark that the generalized hypergeometric system corresponding to the Lauricella function F_{C}, and the one to the Lauricella function F_{D} are defined in this setup (cf. [GZK2]). Then we prove

[^0]
[^0]: This work was partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

