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1. Introduction.

Let $Y$ be a complete hyperbolic complex space. We assume that $Y$ is
hyperbolically imbedded into an irreducible compact complex space $\overline{Y}$ as its
Zariski open subset. Let $X$ be a Zariski open subset of an irreducible compact
complex space. We denote by $Hol(X, Y)$ (resp. $Mer_{dom}(X,$ $Y)$ ) the set of all
holomorphic (resp. dominant meromorphic) mappings of $X$ into $Y$ , where a
mapping is said to be dominant if its image contains a nonempty open subset.
In this paper, by making use of the theory developed by Noguchi [12, 13, 16]

we study the structure of $Hol(X, Y)$ . We first prove the following finiteness
theorem for mappings in noncompact case, which was conjectured by Noguchi
(cf. [16], Conjecture (5.5)),

FINITENESS THEOREM (cf. Theorem 2.3). Let $X$ and $Y$ be as above. Then
$Mer_{dom}(X, Y)$ is a finite set.

This is regarded as the splitting case of the finiteness theorem of the sec-
tions of hyperbolic fibre spaces, and plays an essential role in considering the
structure of hyperbolic fibre spaces in more general setting below. In the case
of a noncompact quotient $D/\Gamma$ of a bounded symmetric domain $D$ in the com-
plex vector space by a torsion free arithmetic discrete subgroup $\Gamma$ of the
identity component of the holomorphic automorphism group of $D,$ $D/\Gamma$ is com-
plete hyperbolic and hyperbolically imbedded into its Satake compactification
(cf. [6]). Thus applying the theorem to this case, we see the finiteness of
$Mer_{tlom}(X, D/\Gamma)$ . Tsushima [20] obtained this result by showing the finiteness
of dominant strictly rational maps into a smooth algebraic variety of log-general
type. In the case where $Y$ is a Riemann surface of finite type $(g, n)$ with
$2g-2+n>0$ , Imayoshi [2] proved the above finiteness theorem. The compact
version of the above theorem (a Lang’s conjecture in [8]) was recently solved
by Noguchi [16] (see \S 2 for precise statement). Using this, Noguchi [12, 11, 16]


