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\S 1. Introduction and statement of results.

In general, it is difficult to determine whether a two generator M\"obius

group is Kleinian or not, or is discrete or not. In [1], for the purpose of
studying one dimensional Teichm\"uller spaces, Keen obtained a moduli inequality
which assures some two generator M\"obius groups are Kleinian. To state her
theorem, we need some notation. Let $A$ and $B$ be M\"obius transformations and
let $G=\langle A, B\rangle$ be the group generated by $A$ and $B$ . By the well known isomor-
phism between the Mobius group and PS$L(2, C)$ , we put

$x=trace(A)$ , $y=trace(B)$ and $z=trace(AB)$ .
The groups we are interested in this article are those which satisfy the following.

(1) $x^{2}+y^{2}+z^{2}=xyz$ ,

(2) $z>2$ and

(3) $|x|>2$ and $|y|>2$ .
For those groups Keen showed the following.

THEOREM 1 ([1]). If the moduli tnple $(x, y, z)$ satisfies (1), (2), (3) and the
inequality

(4) $|z{\rm Im}(x)-2{\rm Im}(y)|<2|{\rm Re}(x)|$ ,

then the group $G=\langle A, B\rangle$ is Kleinian.

On the other hand, we showed the following.

THEOREM 2 ([3]). Let $U=(_{0}^{\alpha}$ $\beta 0)$ and $V=(\begin{array}{ll}a bc d\end{array}),$ $bc\neq 0$ , be loxodromic

elements of $PSL(2, C)$ such that $UVU^{-1}V^{-1}$ is parabolic. If, for each integer $n$ ,

the inequality

(5) $\frac{|\alpha^{n}a|+|\beta^{n}d|}{|\alpha^{n}a+\beta^{n}d|}<\frac{|\alpha|+|\beta|}{|\alpha-\beta|}$


