J. Math. Soc. Japan Vol. 46, No. 4, 1994

Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity

Dedicated to Professor R. Iino on his 70th birthday

By Hayato NAWA

(Received June 29, 1992) (Revised April 1, 1993)

1. Introduction.

We shall consider the blow-up problem for the nonlinear Schrödinger equation:

C(p)
$$\begin{cases} (NS) & 2i\frac{\partial u}{\partial t} + \Delta u + |u|^{p-1}u = 0 \quad (t, x) \in \mathbf{R}_+ \times \mathbf{R}^N, \\ (IV) & u(0, x) = u_0(x), \quad x \in \mathbf{R}^N. \end{cases}$$

Here $i = \sqrt{-1}$, $u_0 \in H^1(\mathbb{R}^N)$ and Δ is the Laplace operator on \mathbb{R}^N . The nonlinear Schrödinger equation of the form (NS) arises in various domains of physics, *e.g.*, fluids, plasmas and optics. The equation (NS) also derived from a field equation for a quantum mechanical nonrelativistic many body system in the semi-classical limit.

The unique local existence of solutions of C(p) is well known for $1 (<math>2^*=2N/(N-2)$ if $N \ge 3$, $=\infty$ if N=1, 2): For any $u_0 \in H^1(\mathbb{R}^N)$, there exists a unique solution u(t, x) of C(p) in $C([0, T_m); H^1(\mathbb{R}^N))$ for some $T_m \in (0, \infty]$ (maximal existence time), and u(t) satisfies the following two conservation laws of L^2 and the energy:

$$(1.1) || u(t) || = || u_0 ||,$$

(1.2)
$$E_{p+1}(u(t)) \equiv \|\nabla u(t)\|^2 - \frac{2}{p+1} \|u(t)\|_{p+1}^{p+1} = E_{p+1}(u_0),$$

for $t \in [0, T_m)$, where $\|\cdot\|$ and $\|\cdot\|_{p+1}$ denotes the L^2 norm and L^{p+1} norm respectively. Furthermore $T_m = \infty$ or $T_m < \infty$ and $\lim_{t \to T_m} \|\nabla u(t)\| = \infty$. For details, see *e.g.*, [11, 12, 14].

* Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.