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1. Introduction.

We shall consider the blow-up problem for the nonlinear Schr\"odinger equa-
tion:

$C(p)$ $\{$

(NS) $2i \frac{\partial u}{\partial t}+\Delta u+|u|^{p-1}u=0$ $(t, x)\in R_{+}\cross R^{N}$ ,

(IV) $u(O, x)=u_{0}(x)$ , $x\in R^{N}$

Here $i=\sqrt{-1},$ $u_{0}\in H^{1}(R^{N})$ and $\Delta$ is the Laplace operator on $R^{N}$ . The nonlinear
Schr\"odinger equation of the form (NS) arises in various domains of physics,
$e.g.$ , fluids, plasmas and optics. The equation (NS) also derived from a field
equation for a quantum mechanical nonrelativistic many body system in the
semi-classical limit.

The unique local existence of solutions of $C(p)$ is well known for $1<p<$

$2^{*}-1$ ($2^{*}=2N/(N-2)$ if $N\geqq 3,$ $=\infty$ if $N=1,2$): For any $u_{0}\in H^{1}(R^{N})$ , there
exists a unique solution $u(t, x)$ of $C(p)$ in $C([0, T_{m});H^{1}(R^{N}))$ for some $T_{\pi\iota}\in$

$(0, \infty]$ (maximal existence time), and $u(t)$ satisfies the following two conserva-
tion laws of $L^{2}$ and the energy:

(1.1) I $u(t)$ I $=Hu_{0}||$ ,

(1.2) $E_{p+1}(u(t)) \equiv||\nabla u(t)||^{2}-\frac{2}{p+1}||u(t)||_{p+1}^{p+1}=E_{p+1}(u_{0})$ ,

for $t\in[0, T_{m})$ , where $||\cdot||$ and $||\cdot||_{p+1}$ denotes the $L^{2}$ norm and $L^{p+1}$ norm re-
spectively. Furthermore $T_{m}=\infty$ or $T_{m}<\infty$ and $\lim_{tarrow\tau_{m}}||\nabla u(t)||=\infty$ . For details,
see $e.g.,$ $[11,12,14]$ .
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