Quasi-umbilical, locally strongly convex homogeneous affine hypersurfaces

By Franki Dillen and Luc Vrancken

(Received Nov. 17, 1992)
(Revised Feb. 23, 1993)

0. Introduction.

In this paper, we continue our investigations on homogeneous, locally strongly convex affine hypersurfaces in \boldsymbol{R}^{n+1}, which we started in [DV1] and [DV2].

A nondegenerate hypersurface M of the equiaffine space \boldsymbol{R}^{n+1} is called locally homogeneous if for all points p and q of M, there exists a neighborhood U_{p} of p in M, and an equiaffine transformation A of \boldsymbol{R}^{n+1}, i.e. $A \in S L(n+1, \boldsymbol{R}) \ltimes \boldsymbol{R}^{n+1}$, such that $A(p)=q$ and $A\left(U_{p}\right) \subset M$. If $U_{p}=M$ for all p, then M is called homogeneous.

We denote the affine normal by ξ and the induced affine connection by ∇. We will always assume here that M is locally strongly convex. Let S denote the shape operator of the affine immersion. Since M is locally strongly convex, S is diagonalizable. If S is a multiple of the identity, M is called an affine sphere. Locally strongly convex homogeneous affine spheres have been studied in [S], see also the discussions in [DV2]. If the affine shape operator at each point has an eigenvalue λ with multiplicity exactly $n-1$, where n is the dimension of M, we call M proper quasi-umbilical. If $\lambda=0$ (so $\operatorname{rank}(S)=1$), we recall the following result from [DV1].

Theorem A [DV1]. Let M be a locally strongly convex, locally homogeneous affine hypersurface with $\operatorname{rank}(S)=1$ in \boldsymbol{R}^{n+1}. Then M is affine equivalent to the convex part of the hypersurface with equation

$$
\left(Z-\frac{1}{2} \sum_{i=1}^{r} X_{i}^{2}\right)^{r+2}\left(W-\frac{1}{2} \sum_{j=1}^{s} Y_{j}^{2}\right)^{s+2}=1,
$$

where $r+s=n-1$ and $\left(X_{1}, \cdots, X_{r}, Y_{1}, \cdots, Y_{s}, Z, W\right)$ are the coordinates of \boldsymbol{R}^{n+1}.
Here, we will mainly consider the case that $\lambda \neq 0$. In Section 2, we will start to construct a special local tangent frame on a locally strongly convex,

[^0]
[^0]: Both authors are Senior Research Assistant of the National Fund for Scientific Research (Belgium).

