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0. Introduction.

In this paper, we continue our investigations on homogeneous, locally
strongly convex affine hypersurfaces in R*", which we started in [DV1] and
[DV2]. '

A nondegenerate hypersurface M of the equiaffine space R™*! is called locally
homogeneous if for all points p and ¢ of M, there exists a neighborhood U, of
p in M, and an equiaffine transformation A of R**!, i.e. AeSL(n+1, R)x R**!,
such that A(p)=¢q and AU ,)CM. If U,=M for all p, then M is called homo-
geneous.

We denote the affine normal by & and the induced affine connection by V.
We will always assume here that M is locally strongly convex. Let S denote
the shape operator of the affine immersion. Since M is locally strongly convex,
S is diagonalizable. If S is a multiple of the identity, M is called an affine
sphere. Locally strongly convex homogeneous affine spheres have been studied
in [S], see also the discussions in [DV2]. If the affine shape operator at each
point has an eigenvalue A with multiplicity exactly n—1, where n is the di-
mension of M, we call M proper quasi-umbilical. If A=0 (so rank (S)=1), we
recall the following result from [DV1].

THEOREM A [DV1]. Let M be a locally strongly convex, locally homogeneous
affine hypersurface with rank (S)=1 in R**'. Then M is affine equivalent to the
convex part of the hypersurface with equation

__1_1- 21‘+2 __1_.3 2.s+2__
(Z-z2x) (W—527) =1,
where r+s=n—1 and (X,, -+, X,, Yy, -+, Y, Z, W) are the coordinates of R**.

Here, we will mainly consider the case that 4#0. In Section 2, we will
start to construct a special local tangent frame on a locally strongly convex,
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