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\S 1. Introduction.

The local commutator method has been initiated by Mourre [11] and major
progress has been made in the spectral and scattering theory for many-particle
Schr\"odinger operators during the last decade. By making use of this method,
for example, the prlnciple of limiting absorption has been established by $[11, 13]$

and the non-existence of positive eigenvalues has been proved by [3]. Further-
more, it has also played a basic role in proving the asymptotic completeness of
wave operators ([4, 9, 16, 17, 21]). In this work, we use this remarkable method
to prove the non-existence of bound states and the principle of limiting absorp-
tion for many-particle Stark Hamiltonians with homogeneous electric fields. The
results obtained have an important application to the problem on the asymptotic
completeness of wave operators. We are going to give a full explanation about
the matter in another paper.

We now consider a system of $N$ particles moving in a given constant electric
field $\mathcal{E}\in R^{3},$ $\mathcal{E}\neq 0$ . We denote by $m_{J},$ $e_{J}$ and $r,\in R^{3}$ , l\leqq i$N, the mass, charge
and position vector of the i-th particle, respectively. We also use the notation
$\langle\cdot, \cdot\rangle$ to denote the usual scalar product in the Euclidean space. Then the
total energy Hamiltonian for such a system is described as

$- \sum_{1\leqq J\leq N}\{\Delta/2m_{J}+e_{J}\langle \mathcal{E}, r_{J}\rangle\}+V$ ,

where the interaction potential $V$ is given as the sum of pair potentials

$V= \sum_{1\subseteq J<k\leqq N}V_{jk}(r_{J}-r_{k})$ .

For notational brevity, the values of masses are fixed throughout as

$m_{J}=1$ , $1\leqq j\leqq N$ ,

but the values of charges are regarded as real parameters. As usual, the
Hamiltonian above is considered in the center-of-mass frame. We introduce the
configuration space $X$ as


