Spectral analysis for N-particle systems with Stark effect: non-existence of bound states and principle of limiting absorption

By Hideo TAMURA

(Received Dec. 24, 1992) (Revised Dec. 25, 1992)

§1. Introduction.

The local commutator method has been initiated by Mourre [11] and major progress has been made in the spectral and scattering theory for many-particle Schrödinger operators during the last decade. By making use of this method, for example, the principle of limiting absorption has been established by [11, 13] and the non-existence of positive eigenvalues has been proved by [3]. Furthermore, it has also played a basic role in proving the asymptotic completeness of wave operators ([4, 9, 16, 17, 21]). In this work, we use this remarkable method to prove the non-existence of bound states and the principle of limiting absorption for many-particle Stark Hamiltonians with homogeneous electric fields. The results obtained have an important application to the problem on the asymptotic completeness of wave operators. We are going to give a full explanation about the matter in another paper.

We now consider a system of N particles moving in a given constant electric field $\mathcal{E} \in \mathbb{R}^3$, $\mathcal{E} \neq 0$. We denote by m_j , e_j and $r_j \in \mathbb{R}^3$, $1 \leq j \leq N$, the mass, charge and position vector of the *j*-th particle, respectively. We also use the notation $\langle \cdot, \cdot \rangle$ to denote the usual scalar product in the Euclidean space. Then the total energy Hamiltonian for such a system is described as

$$-\sum_{1\leq j\leq N} \{\Delta/2m_j + e_j \langle \mathcal{E}, r_j \rangle\} + V,$$

where the interaction potential V is given as the sum of pair potentials

$$V = \sum_{1 \leq j < k \leq N} V_{jk}(r_j - r_k).$$

For notational brevity, the values of masses are fixed throughout as

$$m_j = 1, \qquad 1 \leq j \leq N,$$

but the values of charges are regarded as real parameters. As usual, the Hamiltonian above is considered in the center-of-mass frame. We introduce the configuration space X as