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$V$-sufficiency from the weighted point of view
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TWO germs of functions $f,$ $g:(R^{n}, 0)arrow(R^{p}, 0)$ are said to have the same
(local) $\nu$-type at $0$ ( $v$ stands for variety), if the germs at $0$ of $f^{-1}(0)$ and $g^{-1}(0)$

are homeomorphic. Let $f:(R^{n}, 0)arrow(R^{p}, 0)$ be a $C^{k}$ -function. A very interest-
ing problem is to determine what terms from the Taylor expansion at $0$ , may
be omitted without changing the v-type determined by $f$ . For a solution of
this problem see $[K_{1}]$ .

In this paper we shall consider the weighted analogue to this problem,
and using a new singular Riemannian metric on $R^{n}$(introduced in [P]) we shall
give a characterization of $v$-sufficiency (Theorem A and Theorem $B$ below).

Moreover we shall give a geometric corollary for functions whose components
are the sum of at most two weighted homogeneous polynomials (generalizing
the case with nondegenerate weighted homogeneous components), and also we
give a generalization of a well-known inequality due to Bochnak and Lojasiewicz.
The use of singular Riemannian metrics seems to be quite useful, see for in-
stance [Y], [P].
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\S 1. The results.

Let us denote by $E(n, p)$ the set of all germs of functions $f$ : $(R^{n}, 0)arrow$

$(R^{p}, 0)$ which are $C^{2}$ in a punctured neighbourhood of the origin. From now
on we shall fix a system of positive numbers $w=(w_{1}, \cdots , w_{n})$ , the weights of
variables $x_{i},$ $w(x_{i})=w_{i},$ $1\leqq i\leqq n$ , and a positive number $d$ . For any positive
number $q$ we may introduce (see [P]) the function $\rho=\rho(x)=(\sum_{i=1}^{n}x_{i}^{2q_{i}})^{1/2q}$ , where
$q_{i}=q/w_{i},$ $1\leqq i\leqq n$ . This is a $w$-form of degree one with respect to $w$ , and if
$q_{i}\geqq 1$ , l$i\leqq n, then $\rho\in E(n, 1)$ . We also consider the spheres associated to
this $\rho$

$S_{r}=\{x\in R^{n}|\rho(x)=r\}$ , $r>0$ .
DEFINITION 1. We define a singular Riemannian metric on $R^{n}$ by the fol-


