Recurrence conditions for multidimensional processes of Ornstein-Uhlenbeck type

By Ken-iti SATO, Toshiro WATANABE and Makoto YAMAZATO

(Received Nov. 30, 1992)

1. Introduction and results.

A stochastic process of Ornstein-Uhlenbeck type on the Euclidean space is a Markov process obtained from a spatially homogeneous Markov process undergoing a linear drift force determined by a matrix -Q. We give a criterion of recurrence and transience for a process of this type under the assumption that Q is diagonalizable and its eigenvalues are positive. No restriction is imposed on the part of the spatially homogeneous Markov process.

Rigorous definition of our process is as follows. Let G be an operator defined by

(1.1)
$$Gf(x) = \sum_{j=1}^{d} a_{j}D_{j}f(x) + \frac{1}{2}\sum_{j,k=1}^{d} B_{jk}D_{j}D_{k}f(x) + \int_{\mathbb{R}^{d}} \left[f(x+y) - f(x) - \sum_{j=1}^{d} \frac{y_{j}}{1+|y|^{2}}D_{j}f(x) \right] \rho(dy) - \sum_{j,k=1}^{d} Q_{jk}x_{k}D_{j}f(x),$$

where D_j stands for partial derivative in x_j . Here $a=(a_j)$ is a constant vector, $B=(B_{jk})$ is a symmetric nonnegative-definite constant matrix, ρ is a measure on \mathbb{R}^d with $\rho(\{0\})=0$ and $\int |y|^2(1+|y|^2)^{-1}\rho(dy)<\infty$, and $Q=(Q_{jk})$ is a constant matrix. We consider the real Banach space $C_0(\mathbb{R}^d)$ of continuous functions vanishing at infinity with the norm of uniform convergence. The operator Gis acting in this space and its domain is the class of C^2 functions with compact supports. It is proved in Sato and Yamazato [10] that the smallest closed extension \overline{G} of G is the infinitesimal generator of a strongly continuous nonnegative contraction semigroup on $C_0(\mathbb{R}^d)$. So a Markov process X on \mathbb{R}^d is associated and it is represented, as usual (see [1]), by $(\Omega, \mathfrak{F}, \mathfrak{F}_t, \mathbb{P}^x, X_t)$ with $\mathbb{P}^x(X_0=x)=1$. The Markov process X is called in [10] the process of Γ of Γ of Γ is called the Lévy measure