Modular construction of normal basis

By Keiichi Komatsu

(Received Nov. 17, 1992)

We denote by \boldsymbol{Q} the rational number field and \boldsymbol{Z} the integer ring. Let F be an imaginary quadratic field, p an odd prime number which splits in F, and p a prime ideal of F dividing p. For a positive integer m, we denote by $k=F$ ($\bmod \mathfrak{p}^{m}$) the ray class field of F modulo \mathfrak{p}^{m} and by O_{k} the integer ring of k. Let $K=F\left(\bmod \boldsymbol{p}^{2 m}\right)$. In [4], Taylor proved the following striking result:

Theorem A. The p-integer ring $O_{K}[1 / p]$ has a normal basis over $O_{k}[1 / p]$.
The above result represents the first major advance outside cyclotomic case. In this paper, we shall show that we can obtain a better result than Theorem A by a different approach in proving the following theorem:

Theorem. Let F be an imaginary quadratic field, p an odd prime number which splits in F, \mathfrak{p} a prime ideal of F dividing p and m a positive integer. Let k and K be the ray class field of F modulo \mathfrak{p}^{m} and $\mathfrak{p}^{[5 m / 2]}$, respectively. Then the p-integer ring $O_{K}[1 / p]$ has a normal basis over $O_{k}[1 / p]$.

This theorem will be proved in two steps, in proving Theorems 1 and 2 stated below. We begin by explaining the notations. We fix a positive integer m, a prime p and put

$$
\Gamma=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\boldsymbol{Z}) ; a \equiv d \equiv 1\left(\bmod p^{m}\right), b \equiv 0\left(\bmod p^{m}\right), c \equiv 0\left(\bmod p^{2 m}\right)\right\},
$$

and

$$
\boldsymbol{S}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma ; d \not \equiv 1\left(\bmod p^{m+1}\right)\right\} .
$$

For an integer n with $n>m$, we put

$$
\Gamma_{n}^{\prime}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma ; a \equiv d \equiv 1\left(\bmod p^{m+n}\right), b \equiv 0\left(\bmod p^{n}\right), c \equiv 0\left(\bmod p^{m+n}\right)\right\} .
$$

Then Γ and Γ_{n}^{\prime} are subgroups of $S L_{2}(\boldsymbol{Z})$ and Γ_{n}^{\prime} is a normal subgroup of Γ. Let $\overline{\boldsymbol{Q}}$ be the algebraic closure of \boldsymbol{Q}. An element α of $O_{\overline{\boldsymbol{Q}}}[1 / p]$ is said to be a p-unit, if α is an invertible element of $O_{\overline{\boldsymbol{Q}}}[1 / p]$. For non-negative integer ν, we put $\zeta_{\nu}=e^{2 \pi i / p^{\nu}}$.

