J. Math. Soc. Japan Vol. 45, No. 4, 1993

Borsuk-Ulam theorem and Stiefel manifolds

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

By Katsuhiro KOMIYA

(Received Nov. 5, 1991) (Revised Sept. 18, 1992)

Introduction.

There are several different, but equivalent versions of the classical Borsuk-Ulam theorem. One of them can be stated as follows:

THE CLASSICAL BORSUK-ULAM THEOREM. Let S^n be the unit sphere in euclidean (n+1)-space \mathbb{R}^{n+1} . If $f: S^n \to \mathbb{R}^n$ is a \mathbb{Z}_2 -map, i.e., satisfies f(-x) = -f(x) for all $x \in S^n$, then $f^{-1}(0)$ is nonempty.

Many authors have been contributing to generalizing and extending the Borsuk-Ulam theorem in various ways (see Steinlein [10]). Recently E. Fadell-S. Husseini and J. W. Jaworowski independently introduced an *ideal-valued co-homological index theory* and extended the theorem to maps of Stiefel manifolds, see [2], [3], [4] and [5].

Let $(\mathbf{R}^n)^k$ denote the cartesian product of k copies of \mathbf{R}^n . Any point of $(\mathbf{R}^n)^k$ is represented by a $(k \times n)$ -matrix. Then the k-th orthogonal group O(k) acts on $(\mathbf{R}^n)^k$ by matrix multiplication on the left. When $k \leq n$, the Stiefel manifold $V_k(\mathbf{R}^n)$ of orthonormal k-frames in \mathbf{R}^n can be considered a subspace of $(\mathbf{R}^n)^k$ on which O(k) acts freely. In [2], [3], Fadell and Husseini considered \mathbf{Z}_2^k -maps $f: V_k(\mathbf{R}^n) \to (\mathbf{R}^{n-k})^k$ where $\mathbf{Z}_2^k = \mathbf{Z}_2 \times \cdots \times \mathbf{Z}_2$ (k times) is a subgroup of O(k) which is diagonally imbedded, and they estimated the cohomological size of $f^{-1}(O)/\mathbf{Z}_2^k$ where O is the zero of $(\mathbf{R}^{n-k})^k$. In [4], [5], Jaworowski considered O(2)-maps $f: V_2(\mathbf{R}^n) \to (\mathbf{R}^l)^2$ and estimated the cohomological size of $f^{-1}(T)/O(2)$, where $T = \{A \in (\mathbf{R}^l)^2 | \operatorname{rank} A < 2\}$.

In the present paper we will consider more general class of maps of Stiefel manifolds and generalize their results. We will employ (mod 2) cup₁-length, denoted cup₁(X), as a measure of the cohomological size of a space X. cup₁(X) is defined to be the greatest number s such that there exist $x_1, \dots, x_s \in H^1(X; \mathbb{Z}_2)$ with $x_1 \cup \dots \cup x_s \neq 0$. The inequality cup₁(X) ≥ 0 means X is at least nonempty. When x_1, \dots, x_s can be taken in any positive degrees, the usual cup-length, denoted cup(X), is defined. Then cup₁(X) \leq cup(X) < cat(X), where