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Introduction.

There are several different, but equivalent versions of the classical Borsuk-
Ulam theorem. One of them can be stated as follows:

THE CLASSICAL BORSUK-URM THEOREM. Let $S^{n}$ be the unit sphere in
euclidean $(n+1)$ -space $R^{n+1}$ . If $f:S^{n}arrow R^{n}$ is a $Z_{2}$-map, $i$ . $e.$ , satisfies $f(-x)=$

$-f(x)$ for all $x\in S^{n}$ , then $f^{-1}(0)$ is nonempty.

Many authors have been contributing to generalizing and extending the
Borsuk-Ulam theorem in various ways (see Steinlein [10]). Recently E. Fadell-
S. Husseini and J. W. Jaworowski independently introduced an ideal-valued co-
homological index theory and extended the theorem to maps of Stiefel manifolds,
see [2], [3], [4] and [5].

Let $(R^{n})^{k}$ denote the cartesian product of $k$ copies of $R^{n}$ . Any point of
$(R^{n})^{k}$ is represented by a $(k\cross n)$ -matrix. Then the k-th orthogonal group $0(k)$

acts on $(R^{n})^{k}$ by matrix multiplication on the left. When $k\leqq n$ , the Stiefel
manifold $V_{k}(R^{n})$ of orthonormal $k$-frames in $R^{n}$ can be considered a subspace
of $(R^{n})^{k}$ on which $0(k)$ acts freely. In [2], [3], Fadell and Husseini considered
$Z_{2}^{k}$-maps $f:V_{k}(R^{n})arrow(R^{n-k})^{k}$ where $Z_{2}^{k}=Z_{2}\cross\cdots\cross Z_{2}$ ( $k$ times) is a subgroup
of $0(k)$ which is diagonally imbedded, and they estimated the cohomological
size of $f^{-1}(O)/Z_{2}^{k}$ where $O$ is the zero of $(R"-k)^{k}$ . In [4], [5], Jaworowski
considered $O(2)$ -maps $f:V_{2}(R^{n})arrow(R^{\iota})^{2}$ and estimated the cohomological size of
$f^{-1}(T)/O(2)$ , where $T=\{A\in(R^{\iota})^{2}|rankA<2\}$ .

In the present paper we will consider more general class of maps of Stiefel
manifolds and generalize their results. We will employ $(mod 2)cup_{1}$-length,
denoted $cup_{1}(X)$ , as a measure of the cohomological size of a space X. $cup_{1}(X)$

is defined to be the greatest number $s$ such that there exist $x_{1},$ $\cdots$ , $x_{s}e$

$H^{1}(X;Z_{2})$ with $x_{1}\cup\cdots\cup x_{S}\neq 0$ . The inequality $cup_{1}(X)\geqq 0$ means $X$ is at least
nonempty. When $x_{1},$

$\cdots$ , $x_{s}$ can be taken in any positive degrees, the usual
cup-length, denoted cup (X), is defined. Then $cup_{1}(X)\leqq cup(X)<cat(X)$ , where


