J. Math. Soc. Japan

Vol. 45, No. 3, 1993

Limit shape of the cross-section of shrinking doughnuts

By Naoyuki ISHIMURA

(Received Oct. 16, 1991)
(Revised Sept. 4, 1992)

§ 1. Introduction.

In this article we are concerned with the asymptotic behaviour of symmetric 2-tori which are shrinking to a circle by the mean curvature flow.

The mean curvature flow problem, in a normal parametrization, is to find the family of hypersurfaces $F\left(M_{0}, t\right)=M_{t} \sqsubset \boldsymbol{R}^{n+1}(n \geqq 2)$ satisfying

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial t}(x, t)=-H(x, t) \cdot N(x, t) \tag{1}\\
F(x, 0)=F_{0}(x): M_{0} \hookrightarrow \boldsymbol{R}^{n+1}
\end{array}\right.
$$

where N denotes the outward unit normal and H is the mean curvature with respect to N. Notice that in terms of the induced metric on M_{t} the right hand side of (1) is the Laplace-Beltrami operator $\Delta_{M_{t}}$ on M_{t}.

First we briefly recall some known facts on this problem. When the initial surface M_{0} is strictly convex, Huisken [18], inspired by the work of Hamilton [17], showed that (1) shrinks M_{0} to a round point within finite time, and also proved that for the area preserving rescaled flow M_{0} really converges to a sphere in the C^{∞}-topology. Later Grayson [15] gave the counterexample which shows the convexity assumption in Huisken's theorem cannot be omitted; not all compact hypersurfaces with genus zero shrink to a point without singularity. Our previous joint work [1] with Ahara, on the other hand, dealt with the symmetric 2 -torus and proved that under some technical hypothesis the torus might be shrunk to a circle by the mean curvature flow (see Theorem 2.1, below). Symmetry enables (1) to reduce essentialy a one-dimensional parabolic equation and hence our idea of the proof is based on applying the method of Gage and Hamilton [11], which discuss the plane curve shortening problem, to the equation for the generating curve. Although in our case there appears a lower order term in addition to the plane curve equation (see (6) below), our hypothesis in [1] makes it possible to apply the method of [11]. Indeed this

[^0]
[^0]: Partially supported by Grant-in-Aid for Scientific Research (No. 03740075), Ministry of Education, Science and Culture.

