A remark on the Kawamata rationality theorem

By Mauro C. BELTRAMETTI and Andrew J. SOMMESE

(Received Dec. 24, 1991) (Revised Aug. 11, 1992)

Introduction.

Let X be a projective variety with Gorenstein, rational singularities. Let $\varphi: X \rightarrow Y$ be a surjective morphism with connected fibers from X to a normal projective variety Y. Let L be a φ -ample line bundle and assume that K_X is not φ -nef. Then the Kawamata rationality theorem states that there is a positive fraction $\tau = u/v$, where u, v are positive coprime integers, and such that

a) $K_x + \tau L$ is φ -nef but not φ -ample;

b) $u \leq \max_{y \in Y} \{\dim \varphi^{-1}(y)\} + 1.$

If *u* takes on the maximal value, $\max_{y \in Y} \{\dim \varphi^{-1}(y)\} + 1$, allowed by the Kawamata rationality theorem, then *X* is a P^{u-1} bundle over *Y* (see (2.2)). Moreover there is an ample line bundle \mathcal{L} on *X* such that $K_X \otimes \mathcal{L}^u \approx \varphi^* H$ for an ample line bundle *H* on *Y*, and thus $X = P(\mathcal{E})$ for the ample vector bundle $\mathcal{E} = \varphi_* \mathcal{L}$.

If L is ample and K_x is not nef, the Kawamata rationality theorem and the Kawamata-Shokurov base point free theorem imply that there is a fraction, $\tau = u/v$, with u, v positive coprime integers (called the *nef value* of the pair (X, L)) and a morphism $\phi: X \rightarrow Y$ with connected fibers (called the *nef value morphism* of the pair (X, L)) onto a normal projective variety Y such that

i) $vK_x + uL \approx \phi^* H$ for an ample line bundle H on Y,

ii) $u \leq \max_{y \in Y} \{\dim \phi^{-1}(y)\} + 1.$

We saw that $u = \max_{y \in Y} \{\dim \phi^{-1}(y)\} + 1 \text{ implies that } \phi: X \to Y \text{ is very special.}$ In our main result, (1.4.2), we study the structure of the nef value morphism, ϕ , in the case when $u = \max_{y \in Y} \{\dim \phi^{-1}(y)\}$. If the nef value morphism is birational we need a smoothness assumption on X.

We would like to thank the Max-Planck-Institut für Mathematik in Bonn for its support. This paper was conceived and worked out during the authors' stay at the Max-Planck-Institut in July, 1991. The second author would like to thank the National Science Foundation (NSF Grant DMS 89-21702) for its support.

We would like to thank the referee for suggesting improvements of Theorem (2.2). The original proof was longer and only worked in the smooth case.