A remark on the Kawamata rationality theorem

By Mauro C. Beltrametti and Andrew J. Sommese

(Received Dec. 24, 1991)
(Revised Aug. 11, 1992)

Introduction.

Let X be a projective variety with Gorenstein, rational singularities. Let $\varphi: X \rightarrow Y$ be a surjective morphism with connected fibers from X to a normal projective variety Y. Let L be a φ-ample line bundle and assume that K_{X} is not φ-nef. Then the Kawamata rationality theorem states that there is a positive fraction $\tau=u / v$, where u, v are positive coprime integers, and such that
a) $K_{X}+\tau L$ is φ-nef but not φ-ample ;
b) $u \leqq \max _{y \in \mathrm{Y}}\left\{\operatorname{dim} \varphi^{-1}(y)\right\}+1$.

If u takes on the maximal value, $\max _{y \in Y}\left\{\operatorname{dim} \varphi^{-1}(y)\right\}+1$, allowed by the Kawamata rationality theorem, then X is a \boldsymbol{P}^{u-1} bundle over Y (see (2.2)). Moreover there is an ample line bundle \mathcal{L} on X such that $K_{X} \otimes \mathcal{L}^{u} \approx \varphi^{*} H$ for an ample line bundle H on Y, and thus $X=\boldsymbol{P}(\mathcal{E})$ for the ample vector bundle $\mathcal{E}=$ $\varphi_{*} \mathcal{L}$.

If L is ample and K_{X} is not nef, the Kawamata rationality theorem and the Kawamata-Shokurov base point free theorem imply that there is a fraction, $\tau=u / v$, with u, v positive coprime integers (called the nef value of the pair (X, L)) and a morphism $\phi: X \rightarrow Y$ with connected fibers (called the nef value morphism of the pair (X, L)) onto a normal projective variety Y such that
i) $v K_{X}+u L \approx \phi^{*} H$ for an ample line bundle H on Y,
ii) $u \leqq \max _{y \in Y}\left\{\operatorname{dim} \phi^{-1}(y)\right\}+1$.

We saw that $u=\max _{y \in Y}\left\{\operatorname{dim} \phi^{-1}(y)\right\}+1$ implies that $\phi: X \rightarrow Y$ is very special. In our main result, (1.4.2), we study the structure of the nef value morphism, ϕ, in the case when $u=\max _{y \in Y}\left\{\operatorname{dim} \phi^{-1}(y)\right\}$. If the nef value morphism is birational we need a smoothness assumption on X.

We would like to thank the Max-Planck-Institut für Mathematik in Bonn for its support. This paper was conceived and worked out during the authors' stay at the Max-Planck-Institut in July, 1991. The second author would like to thank the National Science Foundation (NSF Grant DMS 89-21702) for its support.

We would like to thank the referee for suggesting improvements of Theorem (2.2). The original proof was longer and only worked in the smooth case.

