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\S 1. Introduction.

Let $M$ be a minimal surface in $R^{3}$ , or more precisely, a connected oriented
minimal surface immersed in $R^{3}$ . By definition, the Gauss map $G$ of $M$ is the
map which maps each point $p\in M$ to the unit normal vector $G(p)\in S^{2}$ of $M$ at
$p$ . Instead of $G$ , we study the map $g:=\pi\cdot G:Marrow\overline{C}:=C\cup\{\infty\}$ for the stereo-
graphic projection $\pi$ of $S^{2}$ onto $\overline{C}$ . The surface $M$ is canonically considered
as an open Riemann surface with a conformal metric and $g$ is a meromorphic
function on $M$. For a complete minimal surface in $R^{3}g$ has many properties
which have similarities to results in value distribution theory of meromorphic
functions on $C$ . The author obtained some of them in the previous papers [5],
[6] and [7]. The purpose of this paper is to give some unicity theorems for
the Gauss map of minimal surfaces in $R^{3}$ which are similar to the following
theorem for meromorphic functions given by R. Nevanlinna ([9]):

THEOREM. If two nonconstant meromorphic functions $g$ and $\tilde{g}$ on $C$ have
the same inverse images for five distinct values, then $g\equiv\tilde{g}$ .

Let $M$ and $\tilde{M}$ be two nonflat minimal surfaces in $R^{3}$ and assume that there
is a conformal diffeomorphism $\Phi$ of $M$ onto $\tilde{M}$ . Consider the maps $g:=\pi\cdot G$

and $g:=\pi$ . G. $\Phi$ , where $G$ and $\tilde{G}$ are the Gauss maps of $M$ and $1\tilde{M}$ respectively.
Suppose that there are $q$ distinct points $\alpha_{1},$ $\alpha_{2}$ , $\cdot$ . , $\alpha_{q}$ such that $g^{-1}(\alpha_{j})=\tilde{g}^{-1}(\alpha_{j})$

(lSj$q). The main result in this paper is stated as follows:

THEOREM I. If $q\geqq 7$ and either $M$ or $\tilde{M}$ is complete, then $g\equiv\tilde{g}$ .
For a particular case, we can show the following:

THEOREM II. If $q\geqq 6$ and both of $M$ and $\tilde{M}$ are complete and have finite
total curvature, then $g\equiv\tilde{g}$ .

In Theorem I, the number seven is the best-possible. In fact, we can construct
two mutually isometric complete minimal surfaces whose Gauss maps are dis-
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