Unicity theorems for the Gauss maps of complete minimal surfaces

Dedicated to Professor Shoshichi Kobayashi on his 60th birthday

By Hirotaka FUJIMOTO

(Received June 19, 1992)

§1. Introduction.

Let M be a minimal surface in \mathbb{R}^3 , or more precisely, a connected oriented minimal surface immersed in \mathbb{R}^3 . By definition, the Gauss map G of M is the map which maps each point $p \in M$ to the unit normal vector $G(p) \in S^2$ of M at p. Instead of G, we study the map $g := \pi \cdot G : M \rightarrow \overline{C} := \mathbb{C} \cup \{\infty\}$ for the stereographic projection π of S^2 onto \overline{C} . The surface M is canonically considered as an open Riemann surface with a conformal metric and g is a meromorphic function on M. For a complete minimal surface in \mathbb{R}^3 g has many properties which have similarities to results in value distribution theory of meromorphic functions on C. The author obtained some of them in the previous papers [5], [6] and [7]. The purpose of this paper is to give some unicity theorems for the Gauss map of minimal surfaces in \mathbb{R}^3 which are similar to the following theorem for meromorphic functions given by \mathbb{R} . Nevanlinna ([9]):

THEOREM. If two nonconstant meromorphic functions g and \tilde{g} on C have the same inverse images for five distinct values, then $g \equiv \tilde{g}$.

Let M and \tilde{M} be two nonflat minimal surfaces in \mathbb{R}^3 and assume that there is a conformal diffeomorphism Φ of M onto \tilde{M} . Consider the maps $g := \pi \cdot G$ and $\tilde{g} := \pi \cdot \tilde{G} \cdot \Phi$, where G and \tilde{G} are the Gauss maps of M and \tilde{M} respectively. Suppose that there are q distinct points $\alpha_1, \alpha_2, \cdots, \alpha_q$ such that $g^{-1}(\alpha_j) = \tilde{g}^{-1}(\alpha_j)$ $(1 \le j \le q)$. The main result in this paper is stated as follows:

THEOREM I. If $q \ge 7$ and either M or \tilde{M} is complete, then $g \equiv \tilde{g}$.

For a particular case, we can show the following:

THEOREM II. If $q \ge 6$ and both of M and \tilde{M} are complete and have finite total curvature, then $g \equiv \tilde{g}$.

In Theorem I, the number seven is the best-possible. In fact, we can construct two mutually isometric complete minimal surfaces whose Gauss maps are dis-

This research was partially supported by Grant-in-Aid for Scientific Research (No. 04640141), Ministry of Education, Science and Culture.