# Unicity theorems for the Gauss maps of complete minimal surfaces 

Dedicated to Professor Shoshichi Kobayashi on his 60th birthday

By Hirotaka Fujimoto

(Received June 19, 1992)

## § 1. Introduction.

Let $M$ be a minimal surface in $\boldsymbol{R}^{3}$, or more precisely, a connected oriented minimal surface immersed in $\boldsymbol{R}^{3}$. By definition, the Gauss map $G$ of $M$ is the map which maps each point $p \in M$ to the unit normal vector $G(p) \in S^{2}$ of $M$ at $p$. Instead of $G$, we study the map $g:=\pi \cdot G: M \rightarrow \overline{\boldsymbol{C}}:=\boldsymbol{C} \cup\{\infty\}$ for the stereographic projection $\pi$ of $S^{2}$ onto $\overline{\boldsymbol{C}}$. The surface $M$ is canonically considered as an open Riemann surface with a conformal metric and $g$ is a meromorphic function on $M$. For a complete minimal surface in $\boldsymbol{R}^{3} g$ has many properties which have similarities to results in value distribution theory of meromorphic functions on $\boldsymbol{C}$. The author obtained some of them in the previous papers [5], [6] and [7]. The purpose of this paper is to give some unicity theorems for the Gauss map of minimal surfaces in $\boldsymbol{R}^{3}$ which are similar to the following theorem for meromorphic functions given by R. Nevanlinna ([9]):

Theorem. If two nonconstant meromorphic functions $g$ and $\tilde{g}$ on $\boldsymbol{C}$ have the same inverse images for five distinct values, then $g \equiv \tilde{g}$.

Let $M$ and $\tilde{M}$ be two nonflat minimal surfaces in $\boldsymbol{R}^{3}$ and assume that there is a conformal diffeomorphism $\Phi$ of $M$ onto $\tilde{M}$. Consider the maps $g:=\pi \cdot G$ and $\tilde{g}:=\pi \cdot \tilde{G} \cdot \Phi$, where $G$ and $\tilde{G}$ are the Gauss maps of $M$ and $\tilde{M}$ respectively. Suppose that there are $q$ distinct points $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{q}$ such that $g^{-1}\left(\alpha_{j}\right)=\tilde{g}^{-1}\left(\alpha_{j}\right)$ $(1 \leqq j \leqq q)$. The main result in this paper is stated as follows:

Theorem I. If $q \geqq 7$ and either $M$ or $\tilde{M}$ is complete, then $g \equiv \tilde{g}$.
For a particular case, we can show the following:
Theorem II. If $q \geqq 6$ and both of $M$ and $\tilde{M}$ are complete and have finite total curvature, then $g \equiv \tilde{g}$.

In Theorem I, the number seven is the best-possible. In fact, we can construct two mutually isometric complete minimal surfaces whose Gauss maps are dis-

[^0]
[^0]:    This research was partially supported by Grant-in-Aid for Scientific Research (No. 04640141), Ministry of Education, Science and Culture.

