On a class of hypoelliptic differential operators with double characteristics

Dedicated to Professor Mutsuhide Matsumura on his 60th birthday in 1991

By Kazuaki TAIRA

(Received Nov. 18, 1991) (Revised May 21, 1992)

Introduction and results.

This paper is devoted to the study of *hypoellipticity* for second-order degenerate *elliptic* differential operators P(x, D) with real coefficients on \mathbb{R}^n of the form:

$$P(x, D) = \frac{\partial^2}{\partial x_1^2} + \sum_{i, j=2}^n \frac{\partial}{\partial x_i} \left(a^{ij}(x) \frac{\partial}{\partial x_j} \right) + \sum_{i=1}^n b^i(x) \frac{\partial}{\partial x_i} + c(x),$$

where:

1) The a^{ij} are the components of a C^{∞} symmetric contravariant tensor of type $\binom{2}{0}$ on \mathbf{R}^n , and

$$\sum_{i,j=2}^n a^{ij}(x)\xi_i\xi_j \ge 0 \quad \text{on } T^*(\mathbf{R}^n).$$

Here $T^*(\mathbb{R}^n)$ is the cotangent bundle of \mathbb{R}^n .

- 2) $b^i \in C^{\infty}(\mathbb{R}^n)$.
- 3) $c \in C^{\infty}(\mathbf{R}^n)$.

Let u be a distribution on an open subset Ω of \mathbb{R}^n . The singular support of u, denoted by sing supp u, is the complement of the largest open subset of Ω on which u is of class C^{∞} . A differential operator P(x, D) is said to be hypoelliptic in Ω if it satisfies the condition:

sing supp
$$u = \operatorname{sing supp} Pu$$
 for all $u \in \mathcal{D}'(\Omega)$.

This condition is equivalent to the following:

This research was partially supported by Grant-in-Aid for General Scientific Research (No. 03640122), Ministry of Education, Science and Culture.