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Introduction.

Harmonic maps $\psi:(M, g)arrow(N, h)$ between Riemannian manifolds are the
smooth critical points of the energy functional

$E( \emptyset)=\int_{M}e(\psi)dV_{M}$ ,

where $e(\psi)=(1/2)|d\psi|^{2}$ is the energy density of $\psi$ . Or, equivalently, the $C^{2}$

solutions of the elliptic system

(0.1) $Trace_{g}\nabla d\psi=0$ .

The left-hand side of (0.1) is the tension field of $\psi$ , denoted $\tau(\psi)$ ; it is a vector
field along $\psi$ : we refer to the surveys [5], [6] for complete definitions and
background.

Since the pioneering work of Eells and Sampson ([7] (1964)), harmonic maps
have attracted the interest of both geometers and analysts: during the early
stages of the theory, research was focused on maps between compact manifolds.
Indeed, in a compact setting a harmonic map provides a strong candidate for
a “best map” in a prescribed homotopy class; and a natural generalization of
the concept of closed geodesic.

More recently, harmonic maps of non-compact domains have become object
of growing interest: as a significant example, we quote the discovery of a new
family of harmonic maps $\psi:R^{2}arrow H^{2}$ of rank two almost everywhere; that was
obtained by Choi and Treibergs [4], using a version of Ruh-Vilms’ Theorem
for constant mean curvature hypersurfaces of Minkowski 3-space. It is naturaI
to view the study of harmonic maps of non-compact domains as a generaliza-
tion of the theory of harmonic functions $f:Marrow R$ on complete Riemannian
manifolds [18]; however, we point out two key differences:

a) a single equation – $i.e.,$ $\Delta f=0-is$ replaced by a system – $i.e.,$ $(0.1)$ .
b) the curvature of the range plays a role, making system $(0.1)$ non-linear.


