Elliptic differential inequalities with applications to harmonic maps

By Andrea RATTO and Marco RIGOLI

(Received Aug. 13, 1991) (Revised April 10, 1992)

Introduction.

Harmonic maps $\psi: (M, g) \rightarrow (N, h)$ between Riemannian manifolds are the smooth critical points of the energy functional

$$E(\phi) = \int_{M} e(\phi) dV_{M}$$
 ,

where $e(\phi) = (1/2) |d\phi|^2$ is the energy density of ϕ . Or, equivalently, the C^2 solutions of the elliptic system

(0.1)
$$\operatorname{Trace}_{g} \nabla d\psi = 0.$$

The left-hand side of (0.1) is the *tension field* of ϕ , denoted $\tau(\phi)$; it is a vector field along ϕ : we refer to the surveys [5], [6] for complete definitions and background.

Since the pioneering work of Eells and Sampson ([7] (1964)), harmonic maps have attracted the interest of both geometers and analysts: during the early stages of the theory, research was focused on maps between compact manifolds. Indeed, in a compact setting a harmonic map provides a strong candidate for a "best map" in a prescribed homotopy class; and a natural generalization of the concept of closed geodesic.

More recently, harmonic maps of non-compact domains have become object of growing interest: as a significant example, we quote the discovery of a new family of harmonic maps $\psi: \mathbb{R}^2 \to \mathbb{H}^2$ of rank two almost everywhere; that was obtained by Choi and Treibergs [4], using a version of Ruh-Vilms' Theorem for constant mean curvature hypersurfaces of Minkowski 3-space. It is natural to view the study of harmonic maps of non-compact domains as a generalization of the theory of harmonic functions $f: M \to \mathbb{R}$ on complete Riemannian manifolds [18]; however, we point out two key differences:

- a) a single equation -i.e., $\Delta f = 0$ is replaced by a system -i.e., (0.1).
- b) the curvature of the range plays a role, making system (0.1) non-linear.