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   1. Statement of the theorem. 

   In this note, we prove the following assertions. 

   THEOREM. Let k be a perfect field of characteristic p>O and X a smooth 
complete intersection of dimension n in a projective space over k. 

   (a) If i* j and i+ j * n, n+1, H~(X, WQX) =0. 
   (b) I f 2i =i=n, n+1 and 0 < i.<_ n, Hi (X, W SAX) =W and F is bi j ective on 

Hi(X, WQX). 
   (c) Hn-~(X, WQX) is a Cartier module (in the sense of [5], Ch. I, Def. 2.4). 

   (d) If 2i*n+1, Hn-i+1(X, WQX)/F"B=O. 
   (e) If 2i = n+1, Hn-1'(X, WQX)/F°'B = W and F is bijective on 

Hn-ti+1(X, WQX)/Fc B. 

   We follow the notation of [1], [4] and [5]. In particular, W=W(k) (resp. 
K) is the ring of Witt vectors with coefficients in k (resp. the fraction field of 
W). H'(X/W) (resp. H'(X, WQX)) denotes the crystalline cohomology group 

(resp. the Hodge-Witt cohomology group) of X. F (resp. V) stands for the 
Frobenius morphism (resp. the Verschiebung morphism). For a commutative 

group A and an endomorphism m of A, mA (resp. A/m) denotes Ker [m: AA] 
(resp. Coker [m: A-~A]). 

   2. Proof of the theorem. 

   Throughout this section, k denotes a perfect field of characteristic p>O 

and X a smooth complete intersection of dimension n in a projective space 
over k. 

   We first recall known facts on the Hodge cohomology and the crystalline 
cohomology of a smooth complete intersection in a projective space : 

   (I) H~(X, Q1)=0 if i* j and i+j~n; 

   (II) H~(X, SAX)=k if 2i~n and 0<i<_n; 
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