Hodge-Witt cohomology of complete intersections

By Noriyuki SUWA

(Received July 13, 1990) (Revised Feb. 17, 1992)

1. Statement of the theorem.

In this note, we prove the following assertions.

THEOREM. Let k be a perfect field of characteristic p>0 and X a smooth complete intersection of dimension n in a projective space over k.

- (a) If $i \neq j$ and $i+j \neq n$, n+1, $H^{j}(X, W\Omega_{X}^{i})=0$.
- (b) If $2i \neq n$, n+1 and $0 \leq i \leq n$, $H^i(X, W\Omega_X^i) = W$ and F is bijective on $H^i(X, W\Omega_X^i)$.
 - (c) $H^{n-i}(X, W\Omega_X^i)$ is a Cartier module (in the sense of [5], Ch. I, Def. 2.4).
 - (d) If $2i \neq n+1$, $H^{n-i+1}(X, W\Omega_X^i)/F^{\infty}B = 0$.
- (e) If 2i=n+1, $H^{n-i+1}(X,W\Omega_X^i)/F^{\infty}B=W$ and F is bijective on $H^{n-i+1}(X,W\Omega_X^i)/F^{\infty}B$.

We follow the notation of [1], [4] and [5]. In particular, W=W(k) (resp. K) is the ring of Witt vectors with coefficients in k (resp. the fraction field of W). $H^{\cdot}(X/W)$ (resp. $H^{j}(X,WQ_{X}^{i})$) denotes the crystalline cohomology group (resp. the Hodge-Witt cohomology group) of X. F (resp. V) stands for the Frobenius morphism (resp. the Verschiebung morphism). For a commutative group A and an endomorphism M of A, M (resp. A/M) denotes $Ker[m:A\to A]$ (resp. A).

2. Proof of the theorem.

Throughout this section, k denotes a perfect field of characteristic p>0 and X a smooth complete intersection of dimension n in a projective space over k.

We first recall known facts on the Hodge cohomology and the crystalline cohomology of a smooth complete intersection in a projective space:

- (I) $H^{j}(X, \Omega_{X}^{i})=0$ if $i\neq j$ and $i+j\neq n$;
- (II) $H^{i}(X, \Omega_{X}^{i}) = k$ if $2i \neq n$ and $0 \leq i \leq n$;

This work was partially supported by the Natural Science and Engineering Research Council of Canada (NSERC) through N. Yui's grants No. A8566 and No. A9451.