J. Math. Soc. Japan Vol. 45, No. 1, 1993

On cohomology groups attached to towers of algebraic curves

To Professor Shoshichi Kobayashi on his 60th birthday

By Masami OHTA

(Received Jan. 6, 1992)

Introduction.

Let Q^* be a subfield of \overline{Q} , and suppose that we are given an open immersion $j^*: Y^* \subseteq X^*$ of smooth and geometrically irreducible algebraic curves over Q^* , where Y^* (resp. X^*) is affine (resp. proper) over Q^* . Let $j: Y \subseteq X$ be the base change of j^* to \overline{Q} . Then for any abelian (or Z_{i^-}) sheaf F on the étale site of Y^* , we have three kinds of étale cohomology groups: $H^1(Y, F)$, $H^1_c(Y, F)$ $= H^1(X, j_1F)$ and $H^1_P(Y, F) := H^1(X, j_*F) \cong \operatorname{Im}(H^1_c(Y, F) \to H^1(Y, F))$. Such cohomology groups, being equipped with the action of the Galois group $G_{Q^*} :=$ $\operatorname{Gal}(\overline{Q}/Q^*)$, often come up as interesting objects when Y^* , X^* and F are suitably chosen. For instance, they naturally appear in the study of the elliptic modular forms, when Y^* and X^* are the canonical models of the modular curves (cf. [D]).

The purpose of this paper is to study the cohomology groups of the same type, not for a single pair $Y^* \subseteq X^*$, but for a tower of algebraic curves. Namely, let $Y^* \subseteq X^*$ be as above, and consider a tower $\{Y_n^*\}_{n \in N}$ of geometrically irreducible algebraic curves over Q^* , all of which are étale coverings of Y^* . In the text, this tower will be subject to some simple "axioms", which include that all $Y_n := Y_n^* \bigotimes_{q*} \overline{Q}$ are Galois coverings of Y, and that $\mathfrak{G} := \lim_{n \in \mathbb{N}} \operatorname{Gal}(Y_n/Y)$ is an "almost pro-l group" with a prime number l. (See § 1 for details, where two basic examples of such towers can be also found.) Let X_n^* be the normalization of X^* in Y_n^* , and put $X_n := X_n^* \bigotimes_{q*} \overline{Q}$. The group \mathfrak{G} naturally acts on the various cohomology groups $H^1(Y_n, \mathbb{Z}_l)$, $H_c^1(Y_n, \mathbb{Z}_l)$ and $H_P^1(Y_n, \mathbb{Z}_l)\cong$ $H^1(X_n, \mathbb{Z}_l)$; and hence we may consider them as modules over the completed group algebra $\mathcal{A} := \mathbb{Z}_l[[\mathfrak{G}]]$, as well as G_{q*} -modules. Now we would like to put such cohomology groups together to get single cohomology theories corresponding to " H^{1n} , " H_c^{1n} and " H_P^{1n} , respectively attached to the given tower.

Natural candidates for such cohomology theories are simply the projective limits $\lim_{n \in N} H^1(Y_n, \mathbb{Z}_l)$, $\lim_{n \in N} H^1_c(Y_n, \mathbb{Z}_l)$ and $\lim_{n \in N} H^1(X_n, \mathbb{Z}_l)$ relative to the trace mappings; and our aim is to study their structure. Let Z be the maximum connected pro-*l* étale Galois covering of the scheme $\lim_{n \in N} Y_n$, and let \mathfrak{F}