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Introduction.

Let $Q^{*}$ be a subfield of $\overline{Q}$ , and suppose that we are given an open immer-
sion $j^{*}:$ $Y^{*}\subset,X^{*}$ of smooth and geometrically irreducible algebraic curves over
$Q^{*}$ , where $Y^{*}$ (resp. $X^{*}$ ) is affine (resp. proper) over $Q^{*}$ . Let $j$ : Yc.X be the
base change of $j^{*}$ to $\overline{Q}$ . Then for any abelian (or $Z_{\iota^{-}}$ ) sheaf $F$ on the \’etale

site of $Y^{*}$ , we have three kinds of \’etale cohomology groups: $H^{1}(Y, F),$ $H_{c}^{1}(Y, F)$

$=H^{1}(X, j_{!}F)$ and $H_{P}^{1}(Y, F):=H^{1}(X, j_{*}F)\cong{\rm Im}(H_{c}^{1}(Y, F)arrow H^{1}(Y, F))$ . Such co-
homology groups, being equipped with the action of the Galois group $G_{Q*}:=$

Gal $(\overline{Q}/Q^{*})$ , often come up as interesting objects when $Y^{*},$ $x*$ and $F$ are suitably
chosen. For instance, they naturally appear in the study of the elliptic modular
forms, when $Y^{*}$ and $X^{*}$ are the canonical models of the modular curves (cf.

[D] $)$ .
The purpose of this paper is to study the cohomology groups of the same

type, not for a single pair $Y^{*}cX^{*}$ , but for a tower of algebraic curves. Namely,
let $Y^{*}\subset_{arrow}X^{*}$ be as above, and consider a tower $\{Y_{n}^{*}\}_{n\in N}$ of geometrically irre-
ducible algebraic curves over $Q^{*}$ , all of which are \’etale coverings of $Y^{*}$ . In
the text, this tower will be subject to some simple “axioms”, which include
that all $Y_{n}:=Y_{n}^{*}\otimes_{Q}*\overline{Q}$ are Galois coverings of $Y$ , and that (SS: $=\varliminf_{n\in N}Ga1(Y_{n}/Y)$

is an “almost pro-l group” with a prime number $l$ . (See \S 1 for details, where
two basic examples of such towers can be also found.) Let $X_{n}^{*}$ be the normali-
zation of $x*$ in $Y_{n}^{*}$ , and put $X_{n}:=X_{n}^{*}\otimes_{Q*}\overline{Q}$ . The group (S3 naturally acts on
the various cohomology groups $H^{1}(Y_{n}, Z_{\iota}),$ $H_{c}^{1}(Y_{n}, Z_{l})$ and $H_{P}^{1}(Y_{n}, Z_{l})\cong$

$H^{1}(X_{n}, Z_{l})$ ; and hence we may consider them as modules over the completed
group algebra $\sim A:=Z_{\iota}[[\mathfrak{G}]]$ , as well as $G_{Q*}$-modules. Now we would like to
put such cohomology groups together to get single cohomology theories corre-
sponding to $H^{1}’,$ $H_{c}^{1}$

’ and $H_{P}^{1}$“, respectively attached to the given tower.
Natural candidates for such cohomology theories are simply the projective

limits $l\dot{g}\underline{m}_{n\in}{}_{N}H^{1}(Y_{n}, Z_{l}),$ $\varliminf {}_{n\in N}H_{c}^{1}(Y_{n}, Z_{\iota})$ and $1\dot{\not\leq}\underline{m}{}_{n\in N}H^{1}(X_{n}, Z_{\iota})$ relative to the
trace mappings; and our aim is to study their structure. Let $Z$ be the maxi-
mum connected pro-l \’etale Galois covering of the scheme $\varliminf_{n\in N}Y_{n}$ , and let $\mathfrak{F}$


