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Introduction.

There exist precise criterions to decide whether a given C* flow ¢ on an
m dimensional closed manifold M admits a cross-section. For example, one
has the asymptotic cycles [Sc] as well as homology directions [Fr]. Both of
these make use of the first real homology group of M. On the other hand,
there does not exist a general criterion to decide whether a flow admits a
transverse foliation. However, in the case of a three manifold this problem is
solved for certain types of flows, like flows whose orbits are compact [Mi], [Wo],
[E-H-N7], Morse-Smale flows [Gol] and Smale flows [Go2]. In this paper we
treat the problem of extending the result of Goodman’s criterion to a general
vector field on a three manifold. We found that the natural extension should
be in terms of what we call “homotopy direction” [An2]. Using this notion we
define the set £(M) of vector fields whose flows are homotopically linked (§ 2).
Although we were not completely successful, we obtained unexpected properties
which are described in the theorems below.

Let M be a smooth three dimensional closed manifold. We assume that M
is oriented and for convenience we shall fix a Riemannian metric. Every flow
¢ appearing henceforth is generated by a vector field ¢ in NSX (M), the space
of C! non-singular vector fields on M endowed with the C° topology and every
foliation & is a codimension one transversely oriented foliation on M given by
a C!' coordinate systems. We denote by H(M) the topological subspace of
NSX (M) of vector fields whose flows admit a transverse foliation and by H(M)
its closure.

0.1 THEOREM. The sets h(M) and .L(M) are open and not dense in NSX(M)
and satisfy the inclusions

AM) < L(M) = hM).

We construct a flow to show the following
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