The set of vector fields with transverse foliations

By Plácido ANDRADE

(Received Sept. 5, 1991) (Revised Dec. 4, 1991)

Introduction.

There exist precise criterions to decide whether a given C^1 flow ϕ on an m dimensional closed manifold M admits a cross-section. For example, one has the asymptotic cycles $[\mathbf{Sc}]$ as well as homology directions $[\mathbf{Fr}]$. Both of these make use of the first real homology group of M. On the other hand, there does not exist a general criterion to decide whether a flow admits a transverse foliation. However, in the case of a three manifold this problem is solved for certain types of flows, like flows whose orbits are compact $[\mathbf{Mi}]$, $[\mathbf{Wo}]$, $[\mathbf{E-H-N}]$, Morse-Smale flows $[\mathbf{Go1}]$ and Smale flows $[\mathbf{Go2}]$. In this paper we treat the problem of extending the result of Goodman's criterion to a general vector field on a three manifold. We found that the natural extension should be in terms of what we call "homotopy direction" $[\mathbf{An2}]$. Using this notion we define the set $\mathcal{L}(M)$ of vector fields whose flows are homotopically linked (§ 2). Although we were not completely successful, we obtained unexpected properties which are described in the theorems below.

Let M be a smooth three dimensional closed manifold. We assume that M is oriented and for convenience we shall fix a Riemannian metric. Every flow ϕ appearing henceforth is generated by a vector field $\dot{\phi}$ in NSX(M), the space of C^1 non-singular vector fields on M endowed with the C^0 topology and every foliation $\mathcal F$ is a codimension one transversely oriented foliation on M given by a C^1 coordinate systems. We denote by h(M) the topological subspace of NSX(M) of vector fields whose flows admit a transverse foliation and by $h(\overline{M})$ its closure.

0.1 THEOREM. The sets $\pitchfork(M)$ and $\mathcal{L}(M)$ are open and not dense in NSX(M) and satisfy the inclusions

$$hgh(M) \subset \mathcal{L}(M) \subset h(\overline{M}).$$

We construct a flow to show the following

Partly supported by S.C.T/Pr (Brazil).