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1. Introduction.

Some vibratory phenomena of beams may be descrlbed by the fourth order
quasilinear evolution equation

(1.1) $(\partial_{t}^{2}+A_{2}(t, u))\cdot(\partial_{t}^{2}+A_{1}(t, u))u+G(t, u, \partial_{t}u, \partial_{t}^{2}u, \partial_{t}^{3}u)=0$ $(t>0)$ ,

where $A_{i}(t, u),$ $i=1,2$ , are (unbounded) self-adjoint positive definite operators in
a Hilbert space $H$, and $G$ is a lower order nonlinear perturbation.

In such a generality, (1.1) is not so easy to be dealt with. One could
imagine that it is possible to reduce it to a first order equation in a 4-ple of
Hilbert space, and then apply known theories (see $e.g$ . $[K]$ ). However in this
case those methods seem to be too hard to be handled.

In [P], [AP] a very special semilinear case was studied by an $ad$ hoc
method, which provided global existence and boundedness of the solutions of
the Cauchy problem.

AS a preparation for the study of (1.1) here we confine ourselves to study
the local well-posedness of the Cauchy problem for the equation

(1.2) $(\partial_{t}^{2}+\gamma_{2}(u)A)\cdot(\partial_{t}^{2}+\gamma_{1}(u)A)u=0$ $(t>0)$ ,

where $A$ is an (unbounded) self-adjoint positive definite operator in $H$, and $\gamma_{t}$

$(i=1,2)$ are real functionals on $D(A)$ , the domain of $A$ .

THEoREM 1.1 (Main result). Let $A$ be an (unbounded) self-adjoint positive
definite operator in a Hilbert sPace $H$ with inner product (., $\cdot$ ).

For $i=1,2$ let $m_{i}$ : [$0,$ $+\infty[arrow[0,$ $+\infty$ [ satisfy:
i) $m_{i}$ is thrice continuously differentiable $(i=1,2)$ ;

ii) $m_{i}(r)\geqq\nu>0$ $(r\geqq 0;i=1,2)$ ;
iii) $|m_{2}(r)-m_{1}(r)|\geqq\delta>0$ $(r\geqq 0)$ .
Then the Cauchy problem for the equation


