The birational action of \mathfrak{S}_5 on $P^2(C)$ and the icosahedron

By Jiro SEKIGUCHI

(Received Sept. 2, 1991)

§ 1. Introduction.

The symmetric group \mathfrak{S}_5 on five letters 1, 2, 3, 4, 5 is generated by permutations $s_i=(i, i+1)$ (i=1, 2, 3, 4). As is known, the 2-dimensional complex projective space P^2 admits a birational action of \mathfrak{S}_5 in the following manner:

$$s_1: (\xi_1: \xi_2: \xi_3) \longrightarrow (\xi_1^{-1}: \xi_2^{-1}: \xi_3^{-1}),$$

$$s_2: (\xi_1: \xi_2: \xi_3) \longrightarrow (\xi_1: \xi_1 - \xi_2: \xi_1 - \xi_3),$$

$$s_3: (\xi_1: \xi_2: \xi_3) \longrightarrow (\xi_2: \xi_1: \xi_3),$$

$$s_4: (\xi_1: \xi_2: \xi_3) \longrightarrow (\xi_1: \xi_3: \xi_2).$$

Here $\xi = (\xi_1 : \xi_2 : \xi_3)$ means a homogeneous coordinate of P^2 . Putting $S = \{\xi \in P^2 : \xi_1 \xi_2 \xi_3 (\xi_2 - \xi_3)(\xi_3 - \xi_1)(\xi_1 - \xi_2) = 0\}$, we find that each s_i defines an automorphism of $P^2 - S$. Moreover, it is known that \mathfrak{S}_5 coincides with the group of birational actions φ of P^2 such that $\varphi \mid (P^2 - S)$ are automorphisms.

Suggested by a result of [S], N. Takayama showed that there are mutually disjoint twenty simply connected domains D_i ($i=1, \dots, 20$) of P^2-S such that their union is open dense in P^2 and that they are transitive by the \mathfrak{S}_5 -action. On the other hand, it is well-known that the alternative group \mathfrak{U}_5 of the fifth degree is the symmetry group of the icosahedron which has twenty faces.

The purpose of the present paper is to give a description of the fundamental group $\pi_1(P^2-S)$ in terms of combinatorial properties of the icosahedron. In particular, we shall introduce a group $B(\gamma)$ consisting of certain equivalence classes of sequences of the twenty simply connected domains and show that $\pi_1(P^2-S)\cong B(\gamma)$. The precise statement is given in Theorem 8.11.

We are going to explain the contents of this paper briefly. In § 2, we shall define twenty simply connected domains of P^2-S and study their properties. In § 3, we shall construct the blowing up space Z of P^2 so that the proper transform \tilde{S} of S is the union of ten lines whose intersecting points are of