The birational action of \mathfrak{S}_{5} on $\boldsymbol{P}^{2}(\boldsymbol{C})$ and the icosahedron

By Jiro Sekiguchi

(Received Sept. 2, 1991)

§ 1. Introduction.

The symmetric group \mathbb{S}_{5} on five letters $1,2,3,4,5$ is generated by permutations $s_{i}=(i, i+1)(i=1,2,3,4)$. As is known, the 2 -dimensional complex projective space \boldsymbol{P}^{2} admits a birational action of \mathfrak{S}_{5} in the following manner:

$$
\begin{aligned}
& s_{1}:\left(\xi_{1}: \xi_{2}: \xi_{3}\right) \longrightarrow\left(\xi_{1}^{-1}: \xi_{2}^{-1}: \xi_{3}^{-1}\right), \\
& s_{2}:\left(\xi_{1}: \xi_{2}: \xi_{3}\right) \longrightarrow\left(\xi_{1}: \xi_{1}-\xi_{2}: \xi_{1}-\xi_{3}\right), \\
& s_{3}:\left(\xi_{1}: \xi_{2}: \xi_{3}\right) \longrightarrow\left(\xi_{2}: \xi_{1}: \xi_{3}\right), \\
& s_{4}:\left(\xi_{1}: \xi_{2}: \xi_{3}\right) \longrightarrow\left(\xi_{1}: \xi_{3}: \xi_{2}\right) .
\end{aligned}
$$

Here $\xi=\left(\xi_{1}: \xi_{2}: \xi_{3}\right)$ means a homogeneous coordinate of \boldsymbol{P}^{2}. Putting $S=$ $\left\{\xi \in \boldsymbol{P}^{2} ; \xi_{1} \xi_{2} \xi_{3}\left(\xi_{2}-\xi_{3}\right)\left(\xi_{3}-\xi_{1}\right)\left(\xi_{1}-\xi_{2}\right)=0\right\}$, we find that each s_{i} defines an automorphism of $\boldsymbol{P}^{2}-S$. Moreover, it is known that \mathbb{S}_{5} coincides with the group of birational actions φ of \boldsymbol{P}^{2} such that $\varphi \mid\left(\boldsymbol{P}^{2}-S\right)$ are automorphisms.

Suggested by a result of [S], N. Takayama showed that there are mutually disjoint twenty simply connected domains $D_{i}(i=1, \cdots, 20)$ of $\boldsymbol{P}^{2}-S$ such that their union is open dense in \boldsymbol{P}^{2} and that they are transitive by the $⿷_{5}$-action. On the other hand, it is well-known that the alternative group \mathfrak{H}_{5} of the fifth degree is the symmetry group of the icosahedron which has twenty faces.

The purpose of the present paper is to give a description of the fundamental group $\pi_{1}\left(\boldsymbol{P}^{2}-S\right)$ in terms of combinatorial properties of the icosahedron. In particular, we shall introduce a group $B(\gamma)$ consisting of certain equivalence classes of sequences of the twenty simply connected domains and show that $\pi_{1}\left(\boldsymbol{P}^{2}-S\right) \cong B(\gamma)$. The precise statement is given in Theorem 8.11.

We are going to explain the contents of this paper briefly. In $\S 2$, we shall define twenty simply connected domains of $\boldsymbol{P}^{2}-S$ and study their properties. In $\S 3$, we shall construct the blowing up space Z of \boldsymbol{P}^{2} so that the proper transform \tilde{S} of S is the union of ten lines whose intersecting points are of

