Localization of diffusion processes in one-dimensional random environment¹⁾

By Kiyoshi KAWAZU²⁾, Yozo TAMURA and Hiroshi TANAKA

(Received July 18, 1990) (Revised Sept. 3, 1991)

Introduction.

Let X(t, W) be a one-dimensional diffusion process starting at 0 and with generator

(1)
$$\mathcal{L}_{W} = \frac{1}{2} e^{W(x)} \frac{d}{dx} \Big(e^{-W(x)} \frac{d}{dx} \Big),$$

where $\{W(x), x \in \mathbf{R}\}$ is a random environment. The process X(t, W) can be constructed from a one-dimensional Brownian motion through a change of scale and time. It is assumed that the Brownian motion (used for the construction of X(t, W)) and the random environment $\{W(x)\}$ are independent. Formally, X(t, W) is a solution of the stochastic differential equation

$$dX(t) = \text{Brownian differential} - \frac{1}{2}W'(X(t))dt.$$

We are interested in the asymptotic properties of X(t, W) as $t \to \infty$. A result for this type of random environment problem goes back to Sinai [12]. When $\{W(x), x \in \mathbf{R}\}$ is a Brownian environment, Brox [1] introduced the diffusion process X(t, W) as a continuous model of Sinai's random walk ([12]) in a Bernoulli environment and obtained the following result of Sinai-type: $(\log t)^{-2}X(t, \cdot)$ $-b(t, \cdot)$ tends to 0 in probability as $t\to\infty$ where b(t, W) is a suitable function depending only on t and the environment $W=W(\cdot)$; moreover, the distribution of $(\log t)^{-2}X(t, \cdot)$ tends to a limit which is the same as the limit distribution in Sinai's case. Kesten [9] and Golosov [5] obtained the explicit form of the limit distribution (see also [15] for some extension). Results of Sinai-type for a wider class of random environments were then obtained by Letchikov [10] (for non-simple random walks) and Kawazu, Tamura and Tanaka [7], [8] (for

¹⁾ This work was partially supported by Grant-in Aid for Science (No. 01302008), Ministry of Education of Japan.

²⁾ The author was partially supported by Grant-in Aid for Science (No. 01540183), Ministry of Education of Japan.