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\S 1. Introduction.

Homer [3] has shown that assuming $P=NP$ there is a A8 set which is
minimal with respect to the honest polynomial time Turing reducibility, $\leqq_{T}^{h}$ ,
while it is known that the honest polynomial time Turing degrees (hp-T de-
grees) of recursive sets are dense. In [3], Homer raised a question whether a
recursively enumerable $(r.e.)$ set can be $\leqq_{T}^{h}$ minimal. An affirmative answer
has been given by Ambos-Spies [1] (assuming $P=NP$ ). He has shown that
every high $r.e$ . Turing degree contains a $\leqq_{T}^{h}$ minimal element. Downey [2],

on the other hand, has proved that no low Turing degree contains a $\leqq_{T}^{h}$

minimal set. It has also been shown there that the hp-T degrees of low $r.e$ . sets
are dense. He asks if the hp-T degrees of $\Delta_{2}^{0}$ sets are dense. An affirmative
answer evidently implies $P\neq NP$ . We notice that in contrast to the hp-T de-
grees, the polynomial time Turing degrees (p-T degrees) of all sets are dense,
which can be proved by relativizing the proof of the density of the p-T degrees
of recursive sets due to Ladner [4].

Concerning Downey’s question, we shall prove the following strong minimal
pair theorem which obviously implies the density of the hp-T degrees of $\Delta_{2}^{0}$

low sets.

THEOREM. If $A$ and $B$ are $\Delta_{2}^{0}$ low sets such that $B<_{T}^{h}A$ , then there are
two sets $C$ and $D$ which satisfy the following two conditions:

(1) $B<_{T}^{h}C<_{T}^{h}$ $A$ and $B<_{T}^{\hslash}D<_{T}^{h}A$ ,

(2) $\deg_{T}^{h}(B)=\deg_{T}^{\hslash}(C)$ A $\deg_{T}^{h}(D)$ .

In [5], Landweber, Lipton and Robertson have proved the strong minimal
pair theorem for the p-T degrees of recursive sets. In \S 2, we shall give a
proof of the theorem for the hp-T degrees of recursive sets. The proof is a
typical example of a Ladner style “looking back” technique. In \S 3, we shall
give a proof of the theorem for the $\Delta_{2}^{0}$ low sets. Since our proof heavily de-
pends on the notion of hp-T reducibility, it is not known whether the strong
minimal pair theorem holds for the p-T degrees of A8 low sets.


