The invariant differential forms on the Teichmüller space under the Fenchel-Nielsen flows

By Nariya KAWAZUMI

(Received Dec. 28, 1990) (Revised March 25, 1991)

Introduction.

We begin by giving an explanation of our motivation. Given a C^{∞} manifold M, $\Omega^*(M)$ denotes the differential graded algebra of all C^{∞} differential forms on M. Let G be a semi-simple Lie group, K its maximal compact subgroup, and Γ a discrete subgroup of G. The inclusion of invariant algebras

$$\Omega^*(G/K)^G \subset \Omega^*(G/K)^\Gamma = \Omega^*(\Gamma \backslash G/K)$$

induces the homomorphism

$$H^*(\Omega^*(G/K)^G) \longrightarrow H^*(\Gamma \backslash G/K)$$
.

In the case Γ is cocompact, Matsushima [Ma] established that it is isomorphic for sufficiently small *. Using this homomorphism Borel [B] determined the stable real cohomology of arithmetic groups.

Our purpose is to find an analogue of this Matsushima's theory for the moduli space of compact Riemann surfaces of genus g, \mathbf{M}_g . More precisely we want to find out a group which transitively acts on the Teichmüller space of compact Riemann surfaces of genus g, T_g , and includes the mapping class group \mathcal{M}_g as a "discrete" subgroup. Then we want to investigate the invariant differential forms on T_g under the group and its relation to the real cohomology of \mathbf{M}_g .

On the other hand, by Dehn-Lickorish [L], the mapping class group \mathcal{M}_g is generated by the Dehn twists associated to the simple closed curves in the oriented closed surface of genus g, Σ_g . The twist associated to a simple closed curve α is described as follows; cut Σ_g along α , rotate one boundary relative to the other in the angle 2π , and reglue in this new position. Varying the rotation angle over the real numbers, Fenchel-Nielsen defined the flow on the Teichmüller space T_g , called the Fenchel-Nielsen flow associated to α [W1][G2]. When we define FN the subgroup of $Diff(T_g)$ generated by the Fenchel-Nielsen flows associated to all simple closed geodesics, FN includes \mathcal{M}_g as a "discrete" subgroup. Furthermore the group FN acts on T_g transitively in view of a