Mappings of moduli spaces for harmonic eigenmaps and minimal immersions between spheres

By Gabor TOTH

(Received Feb. 8, 1991)

1. Introduction and preliminaries.

Let $\mathscr{H}^p = \mathscr{H}_{S^m}^p$ denote the vector space of spherical harmonics of order $p \ge 1$ on the Euclidean *m*-sphere S^m , $m \ge 2$. We think of a spherical harmonic as a degree *p* homogeneous harmonic polynomial in m+1 variables or as an eigenfunction of the Laplace-Beltrami operator Δ^{S^m} with eigenvalue $\lambda_p = p(p+m-1)$ (obtained from the polynomial by restriction to S^m). A map $f: S^m \to S_V$ into the unit sphere of a Euclidean vector space V is said to be a λ_p -eigenmap if all components of f belong to \mathscr{H}^p , i.e., for $\mu \in V^*$, we have $\mu \circ f \in \mathscr{H}^p$. (Note that a λ_p -eigenmap is nothing but a harmonic map with energy density $\lambda_p/2$ [2].) $f: S^m \to S_V$ is full if the image of f in V spans V. In general, restricting to span im $f \cap S_V$, f gives rise to a full λ_p -eigenmap that we will denote by the same symbol. Two λ_p -eigenmaps $f_1: S^m \to S_{V_1}$ and $f_2: S^m \to S_{V_2}$ are equivalent if there exists an isometry $U: V_1 \to V_2$ such that $f_2 = U \circ f_1$.

The universal example of a λ_p -eigenmap is given by the standard minimal immersion $f_{\lambda_p}: S^m \to S_{\mathcal{H}^p}$ defined by

$$f_{\lambda_p}(x) = \sum_{j=0}^{n(\lambda_p)} f_{\lambda_p}^j(x) f_{\lambda_p}^j,$$

where $\{f_{\lambda_p}^j\}_{j=0}^{n(\lambda_p)} \subset \mathcal{H}^p$ is an orthonormal basis with respect to the normalized L_2 -scalar product

$$\langle h, h' \rangle_p = \frac{n(\lambda_p) + 1}{vol(S^m)} \int_{S^m} hh' v_{S^m}$$
 (1)

Here v_{Sm} is the volume form on S^m , $vol(S^m) = \int_{S^m} v_{S^m}$ is the volume of S^m and

$$n(\lambda_p) + 1 = \dim \mathcal{H}^p = (2p + m - 1) \frac{(p + m - 1)!}{(p + 1)!(m - 1)!}.$$
(2)

 f_{λ_p} is clearly full and does not depend on the orthonormal basis.

 f_{λ_p} is universal in the sense that, for any λ_p -eigenmap $f: S^m \to S_V$, there exists a linear map $A: \mathcal{H}^p \to V$ such that $f = A \circ f_{\lambda_p}$. Clearly, A is surjective