Einstein-Hermitian connections on Hyper-Kähler quotients

Dedicated to Professor Tadashi Nagano on his 60th birthday

By Toru GOCHO and Hiraku NAKAJIMA(*)

(Received May 11, 1990) (Revised Nov. 26, 1990)

1. Main result.

A hyper-Kähler structure on a Riemannian manifold (Y, g) is a set of three almost complex structures (I, J, K) which are parallel with respect to the Levi-Civita connection and satisfy the quaternion relations

$$IJ = -JI = K$$
.

We have the associated Kähler forms ω_I , ω_J , ω_K defined by

$$\omega_I(v, w) = g(Iv, w),$$
 $\omega_J(v, w) = g(Jv, w),$ $\omega_K(v, w) = g(Kv, w),$ for $v, w \in TY$

which are closed and parallel.

Let G be a compact Lie group acting on Y so as to preserve the metric g and the hyper-Kähler structure (I, J, K). Each element $\xi \in \mathfrak{g}$ of the Lie algebra of G defines a vector field ξ^* on Y which generates the action of ξ . The hyper-Kähler moment map defined below is the set of three moment maps.

DEFINITION 1.1. A hyper-Kähler moment map for the action of G on Y is a map $\mu = (\mu_I, \mu_J, \mu_K)$: $Y \rightarrow \mathbb{R}^3 \otimes \mathfrak{g}^*$ which satisfies

(a)
$$\mu_A(y \cdot g) = \operatorname{Ad}_g^*(\mu_A(y)), \quad y \in Y, g \in G, A = I, J, K$$

(b)
$$\langle \xi, d\mu_A(v) \rangle = \omega_A(\xi^*, v), \quad v \in TY, \, \xi \in \mathfrak{g}, \, A = I, \, J, \, K,$$

where g^* is the dual space of g, Ad^* : $g^* \to g^*$ is the coadjoint map and \langle , \rangle denotes the dual pairing between g and g^* .

^(*) This author was partially supported by Grant-in-Aid for Scientific Research (No. 02854001), Ministry of Education, Science and Culture.