Growth properties of \boldsymbol{p}-th hyperplane means of Green potentials in a half space

By Yoshihiro Mizuta

(Received Sept. 12, 1990)

1. Introduction.

Recently, for a Green potential v on the unit ball of \boldsymbol{R}^{n}, Gardiner [1] studied the limiting behavior of $\mathscr{M}_{p}(v, r)$, which is the p-th order mean of v over the sphere of radius r centered at the origin. In this paper we are concerned with Green potentials $G f$ in the half space $D=\left\{x=\left(x^{\prime}, x_{n}\right) \in \boldsymbol{R}^{n-1} \times \boldsymbol{R}^{1}\right.$; $\left.x_{n}>0\right\}$, where $n \geqq 2$ and f is a nonnegative measurable function on D satisfying

$$
\int_{D} x_{n}^{\alpha} f(x)^{a} d x<\infty,
$$

where $q \geqq 1$ and $\alpha \leqq 2 q-1$. For $p>0$ and a nonnegative Borel measurable function u on D, define $M_{p}(u, r)=\left(\int_{R^{n-1}} u\left(x^{\prime}, r\right)^{p} d x^{\prime}\right)^{1 / p}$; in case $p=\infty$, define $M_{\infty}(u, r)=$ $\sup \left\{u\left(x^{\prime}, r\right) ; x^{\prime} \in \boldsymbol{R}^{n-1}\right\}$. Our aim in this paper is to prove that

$$
\lim _{x_{n} \downarrow 0} x_{n}^{(n-2 q+\alpha) / q-(n-1) / p} M_{p}\left(G f, x_{n}\right)=0,
$$

or, more weakly,

$$
\liminf _{x_{n} \downarrow 0} x_{n}^{(n-2 q+\alpha) / q-(n-1) / p} M_{p}\left(G f, x_{n}\right)=0
$$

for p satisfying a suitable condition; the power of x_{n} is shown to be best possible. In case $q=1$, our theorems below give versions of Gardiner's results in [1] to the half space.

2. Preliminary lemmas.

Now we give some notation and terminologies needed later. Let $G(x, y)$ denote the Green function in the half space D, that is,

$$
G(x, y)=\left\{\begin{array}{l}
|x-y|^{2-n}-|\bar{x}-y|^{2-n} \quad \text { in case } n \geqq 3, \\
\log (|\bar{x}-y| /|x-y|) \quad \text { in case } n=2,
\end{array}\right.
$$

where $\bar{x}=\left(x^{\prime},-x_{n}\right)$ for $x=\left(x^{\prime}, x_{n}\right)$. We define the Green potential $G \mu$ of a nonnegative (Radon) measure μ on D by setting

