A geometric characterization of the groups M_{12}, He and Ru

By Richard Weiss*

(Received July 25, 1990)
(Revised Nov. 2, 1990)

1. Introduction.

As in [1], we define a geometry $\Gamma=\left(\mathscr{B}_{1}, \cdots, \mathscr{B}_{r} ; *\right)$ to be an ordered sequence of r pairwise disjoint non-empty sets \mathscr{B}_{i} together with a symmetric incidence relation $*$ on their union $\mathscr{B}=\mathscr{B}_{1} \cup \cdots \cup \mathcal{B}_{r}$ such that if F is any maximal set of pairwise incident elements (i. e. a maximal flag), then $\left|F \cap \mathscr{B}_{i}\right|=1$ for $i=1, \cdots, r$. The number r is called the rank of Γ. The geometry Γ is called connected if the r-partite graph $(\mathscr{B}, *)$ is connected.

We recall that a generalized n-gon (for $n \geqq 2$) is a geometry $\Gamma=(\mathscr{P}, \mathcal{L} ; *)$ of rank 2 such that the bipartite graph $(\mathscr{P} \cup \mathcal{L}, *)$ has diameter n and girth $2 n$. The elements of \mathscr{P} are called points and the elements of \mathcal{L} lines. A generalized n-gon is called thick if every vertex of the graph ($\mathscr{P} \cup \mathcal{L}, *$) has at least three neighbors. If $\Pi=(\mathscr{P}, \mathcal{L} ; *)$ is a thick generalized n-gon, we define Π_{0} to be $\$ the geometry $(\mathscr{F}, \mathscr{P} \cup \mathcal{L} ; *$), where \mathscr{F} is the set of maximal flags of Π and $*$ the natural incidence relation. Then Π_{0} is a generalized $2 n$-gon having two lines through every point (but more than two points on a line). We will call such a generalized $2 n$-gon point-thin.

The building attached to the group $P S p_{4}\left(p^{k}\right)$ is a generalized quadrangle. For $p=2$, this geometry, which we denote by $Q(k)$, is self-dual (see [3]), and $Q(k)_{0}$ is a point-thin generalized octagon on which aut $\left(P S p_{4}\left(p^{k}\right)\right)$ acts flagtransitively. Similarly, there is a self-dual generalized hexagon associated with the group $G_{2}\left(3^{k}\right)$, which we denote by $\mathscr{H}(k)$, such that aut $\left(G_{2}\left(3^{k}\right)\right)$ acts flagtransitively on the generalized dodecagon $\mathscr{H}(k)_{0}$. The building attached to the group ${ }^{2} F_{4}\left(2^{k}\right)$ is a generalized octagon with $1+2^{k}$ points on a line. We call this octagon $\mathcal{O}(k)$ and write $\mathcal{O}(k)^{\circ}$ to denote its dual.

Let F be a non-maximal flag of a geometry $\Gamma=\left(\mathscr{B}_{1}, \cdots, \mathscr{B}_{r} ; *\right)$. The set

$$
J=\left\{i \mid \mathscr{B}_{i} \cap F \neq \varnothing\right\}
$$

is called the type of F. For each $m \notin J$, let $\mathscr{B}_{m}^{F}=\left\{u \in \mathscr{B}_{m} \mid u * x\right.$ for all $\left.x \in F\right\}$.

[^0]
[^0]: * Research partially supported by NSF Grant DMS-8901904.

