J. Math. Soc. Japan Vol. 43, No. 4, 1991

A geometric characterization of the groups M_{12} , He and Ru

By Richard WEISS*

(Received July 25, 1990) (Revised Nov. 2, 1990)

1. Introduction.

As in [1], we define a geometry $\Gamma = (\mathcal{B}_1, \dots, \mathcal{B}_r; *)$ to be an ordered sequence of r pairwise disjoint non-empty sets \mathcal{B}_i together with a symmetric incidence relation * on their union $\mathcal{B} = \mathcal{B}_1 \cup \dots \cup \mathcal{B}_r$ such that if F is any maximal set of pairwise incident elements (i. e. a maximal flag), then $|F \cap \mathcal{B}_i| = 1$ for $i=1, \dots, r$. The number r is called the rank of Γ . The geometry Γ is called connected if the r-partite graph $(\mathcal{B}, *)$ is connected.

We recall that a generalized *n*-gon (for $n \ge 2$) is a geometry $\Gamma = (\mathcal{P}, \mathcal{L}; *)$ of rank 2 such that the bipartite graph $(\mathcal{P} \cup \mathcal{L}, *)$ has diameter *n* and girth 2*n*. The elements of \mathcal{P} are called points and the elements of \mathcal{L} lines. A generalized *n*-gon is called *thick* if every vertex of the graph $(\mathcal{P} \cup \mathcal{L}, *)$ has at least three neighbors. If $\Pi = (\mathcal{P}, \mathcal{L}; *)$ is a thick generalized *n*-gon, we define Π_0 to be Π the geometry $(\mathcal{F}, \mathcal{P} \cup \mathcal{L}; *)$, where \mathcal{F} is the set of maximal flags of Π and *the natural incidence relation. Then Π_0 is a generalized 2*n*-gon having two lines through every point (but more than two points on a line). We will call such a generalized 2*n*-gon *point-thin*.

The building attached to the group $PSp_4(p^k)$ is a generalized quadrangle. For p=2, this geometry, which we denote by Q(k), is self-dual (see [3]), and $Q(k)_0$ is a point-thin generalized octagon on which $\operatorname{aut}(PSp_4(p^k))$ acts flagtransitively. Similarly, there is a self-dual generalized hexagon associated with the group $G_2(3^k)$, which we denote by $\mathcal{H}(k)$, such that $\operatorname{aut}(G_2(3^k))$ acts flagtransitively on the generalized dodecagon $\mathcal{H}(k)_0$. The building attached to the group ${}^2F_4(2^k)$ is a generalized octagon with $1+2^k$ points on a line. We call this octagon $\mathcal{O}(k)$ and write $\mathcal{O}(k)^\circ$ to denote its dual.

Let F be a non-maximal flag of a geometry $\Gamma = (\mathcal{B}_1, \dots, \mathcal{B}_r; *)$. The set

$$J = \{i \mid \mathcal{B}_i \cap F \neq \emptyset\}$$

is called the type of F. For each $m \notin J$, let $\mathscr{B}_m^F = \{u \in \mathscr{B}_m \mid u * x \text{ for all } x \in F\}$.

^{*} Research partially supported by NSF Grant DMS-8901904.