Symmetric solutions of the equation for the scalar curvature under conformal deformation of a Riemannian metric

By Shin KATO

(Received Oct. 25, 1990)

1. Introduction.

Let (M, g) be a compact *n*-dimensional Riemannian manifold without boundary $(n \ge 3)$ and S_g be its scalar curvature. Define a new metric \hat{g} which is pointwise conformal to g by $\hat{g} := u^{p-2}g$ with a positive smooth function u. Then its scalar curvature is given by

$$S_{\hat{g}} = u^{1-p}(a\Delta_g u + S_g u)$$

where p=2n/(n-2), a=4(n-1)/(n-2) and Δ_g is the Laplacian with respect to g, namely

$$\Delta_g u := -g^{ij} \nabla_i \nabla_j u \, .$$

Now we are interested in the question of which kind of functions can be realized as scalar curvatures in the conformal class of g. In particular, we assume g is invariant under the action of some isometry group Γ , and consider Γ -invariant scalar curvatures realized with Γ -invariant metrics. From the above formula, f is realized if and only if there exists at least one solution of the following nonlinear elliptic differential equation:

(*)
$$\begin{cases} a\Delta_g u + S_g u = f u^{p-1} \\ u > 0 \end{cases} \quad \text{on } M.$$

In the case f is a constant, it is called the Yamabe problem, and if f has the same signature as the Yamabe invariant $\mu(M)$ (see Definitions 1.1), then (*) has at least one solution (cf. [17], [15], [1], [10]; see also [8]). On the other hand, several authors discussed also about the case f is not a constant and it is known that in the case $(M, g)=(S^n, g_0)$ (that is the standard sphere), (*) does not always have a solution (cf. [5], [2]) even if f>0 (namely f has the same signature as $\mu(S^n)>0$). Aubin [1] obtained the useful criterion for the existence of a solution of (*), and several authors generalized it to the Γ invariant case. From this criterion and using Green function, Schoen [10]