J. Math. Soc. Japan Vol. 43, No. 4, 1991

Three contributions to the homotopy theory of the exceptional Lie groups G_2 and F_4^*

By Donald M. DAVIS and Mark MAHOWALD

(Received May 18, 1990)

1. Statement of results.

In this paper, we prove three theorems related to the homotopy theory of the exceptional Lie groups G_2 and F_4 . These results will be useful in work of the first author with Bendersky and Mimura, which seeks to calculate v_1 -periodic homotopy groups of all exceptional Lie groups.

Our first result, which will be proved in Section 2, should be useful in determining the homotopy groups of the homogeneous space F_4/G_2 , and consequently in deducing information about $\pi_*(F_4)_{(2)}$ from information about $\pi_*(G_2)_{(2)}$.

THEOREM 1.1. There is a 2-local fibration

 $S^{15} \longrightarrow F_4/G_2 \longrightarrow S^{23}.$

Such a fibration is known to exist localized at primes ≥ 5 , ([21]) and to not exist at the prime 3. ([7])

Our second result is relevant to F_4 because of the equivalence $F_4/Spin(9) = \Pi$, where Π denotes the Cayley projective plane ([6]).

THEOREM 1.2. There is a fibration

$$S^{\tau} \longrightarrow \Omega \Pi \longrightarrow \Omega S^{23}.$$

This result, which will be proved in Section 3, might allow one to extend the range of calculation of $\pi_*(\Pi)$ begun in [20]. In particular, it implies both upper- and lower-bounds for *p*-exponents of Π , which are defined by

 $\exp_p(\Pi) = \max\{e : \pi_*(\Pi) \text{ has an elements of order } p^e\}.$

If $p \ge 5$, then it is known (e.g., [20]) that the fibration of our Theorem 1.2 exists as a product, and so $\exp_p(\Pi) = \exp_p(S^{23}) = 11$, by [10]. Our theorem implies that

^{*} AMS Subject Classification 57T20.

Both authors were partially supported by the National Science Foundation.