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1. Statement of results.

In this paper, we prove three theorems related to the homotopy theory of
the exceptional Lie groups $G_{2}$ and $F_{4}$ . These results will be useful in work of
the first author with Bendersky and Mimura, which seeks to calculate $v_{1}$ -periodic
homotopy groups of all exceptional Lie groups.

Our first result, which will be proved in Section 2, should be useful in
determining the homotopy groups of the homogeneous space $F_{4}/G_{2}$ , and conse-
quently in deducing information about $\pi_{*}(F_{4})_{(2)}$ from information about $\pi_{*}(G_{2})_{(2)}$ .

THEOREM 1.1. There is a 2-local fibration
$S^{15}arrow F_{4}/G_{2}arrow S^{23}$ .

Such a fibration is known to exist localized at primes $\geqq 5,$ $([21])$ and to not
exist at the prime 3. ([7])

Our second result is relevant to $F_{4}$ because of the equivalence $F_{4}/Spin(9)=$

$\Pi$ , where $\Pi$ denotes the Cayley projective plane ([6]).

THEOREM 1.2. There is a fibration
$S^{7}arrow\Omega\Pi-\Omega S^{23}$ .

This result, which will be proved in Section 3, might allow one to extend
the range of calculation of $\pi_{\star}(\Pi)$ begun in [20]. In particular, it implies both
upper- and lower-bounds for $P$ -exponents of $\Pi$ , which are defined by

$\exp_{p}(\prod)=\max$ { $e$ : $\pi_{*}(\Pi)$ has an elements of order $p^{e}$ } .

If $p\underline{>-}5$ , then it is known $(e. g., [20])$ that the fibration of our Theorem 1.2
exists as a product, and so $\exp_{p}(\Pi)=\exp_{p}(S^{23})=11$ , by [10]. Our theorem
implies that
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