# On special values of Selberg type zeta functions on $S U(1, q+1)$ 

By Koichi TAKASE<br>(Received Aug. 1, 1988)<br>(Revised Aug. 10, 1989)

## §0. Introduction.

There is mystery in the arithmetic nature of the special values of $\zeta(s)=$ $\sum_{n=1}^{\infty} n^{-s}$ at the odd integers greater than one.

It is widely believed that the special values of the Dedekind zeta function $\zeta_{K}(s)$ of an algebraic number field $K$ at the positive integer $m$ is written in the form

$$
\zeta_{K}(m)=R \cdot P \cdot A
$$

where $R=\operatorname{vol}\left(\Gamma \backslash \boldsymbol{R}^{r}\right)$ is the (higher) regulator with $r=\operatorname{ord}_{s=1-m} \zeta_{K}(s)$ and $\Gamma \subset \boldsymbol{R}^{r}$ a $Z$-lattice, $P$ is the period and $A$ is an algebraic number called the algebraic part of the special value $\zeta_{K}(m)$. A typical example is the residue formula at $s=1$, that is, $\zeta_{K}(s)$ has a simple pole at $s=1$ and

$$
\operatorname{Res}_{s=1} \zeta_{K}(s)=R(K) \cdot P \cdot A
$$

where $R(K)=\operatorname{vol}\left(U_{K} \backslash \boldsymbol{R}^{r_{1}+r_{2}-1}\right)$ is the usual regulator of $K$ with $r_{1}+r_{2}-1=$ $\operatorname{ord}_{s=0} \zeta_{K}(s), P=2^{r}(2 \pi)^{r}$, and $A=h /(w \sqrt{|D|})$. Here $U_{K}$ is the unit group of the maximal order of $K, r_{1}$ (resp. $r_{2}$ ) is the number of the real (resp. complex) places of $K, h$ is the class number of $K, w$ is the number of the roots of unity contained in $K$, and $D$ is the absolute discriminant of $K$.

In this paper, we will show that special values of Selberg zeta functions are also written as a product of "regulator" and "period".

In $\S 1$, we will recall basic facts on the irreducible unitary representations of the special unitary group $S U(1, q+1)$ of signature $(1, q+1)(q>0)$. The unitary dual of a real rank one semi-simple Lie group is determined by [BSB]. We will recall a result of Kraljevic [Kr] in which we can find a parametrization of the irreducible unitary representations of $S U(1, q+1)$ and the irreducible decomposition of them restricted to a maximal compact subgroup $K$ of $S U(1$, $q+1$ ). We will give a connection between the Harish-Chandra parametrization of square-integrable representations of $S U(1, q+1)$ and the parametrization of Kraljevic.

