On hypoellipticity for a certain operator with double characteristic

Dedicated to Professor Mutsuhide Matsumura on his 60 th birthday

By Toshihiko Hoshiro

(Received May 22, 1990)
(Revised Oct. 3, 1990)

§ 1. Introduction and result.

In this paper, we consider C^{∞}-hypoellipticity for the operator

$$
\begin{gather*}
P=D_{1}{ }^{2}+D_{2}{ }^{2}+D_{3}{ }^{2}+x_{3}{ }^{2} D_{4}{ }^{2}+\left(f\left(x_{1}\right)-1\right) D_{4}, \tag{1.1}\\
\left(D_{j}=-i \frac{\partial}{\partial x_{j}} \quad j=1,2,3,4\right)
\end{gather*}
$$

in neighborhoods ($\subset \boldsymbol{R}^{4}$) of the hypersurface $x_{1}=0$. Here we assume that the function $f\left(x_{1}\right)$ has the following properties:
(A.1) (i) $f(0)=0, \quad f\left(x_{1}\right)>0 \quad$ if $x_{1} \neq 0$.
(ii) $f\left(x_{1}\right)$ is monotone in the intervals $[0, \delta)$ and $(-\delta, 0]$ for some $\delta>0$.
Notice that the above operator (1.1) is a degenerate elliptic operator with double characteristic $\Sigma=\left\{(x, \xi) \in T^{*} \boldsymbol{R}^{4} \backslash 0 ; \xi_{1}=\xi_{2}=\xi_{3}=x_{3}=0\right\}$. Also notice that the canonical symplectic form $\sigma=\sum_{j} d x_{j} \wedge d \xi_{j}$ is of constant rank (=2) on $T_{\rho} \Sigma$ for any point $\rho \in \Sigma$. A. Grigis [3] treated a class of such operators after the important work of L. Boutet de Monvel [1]. He has given a condition which is necessary and sufficient for them to be hypoelliptic with loss of one derivative. Roughly speaking, his condition is that Melin's invariant (=subprincipal symbol + positive trace/2) does not take non-positive (real) values on the characteristic manifold Σ. For the operator (1.1), it becomes $0<f\left(x_{1}\right)<2$ if $\mathscr{I}_{m} f\left(x_{1}\right)=0$ (cf. the condition (b) of théorème 0.1 in [3]). So, under the assumption (i) of (A.1), the operator (1.1) does not satisfy the condition on the hypersurface $x_{1}=0$. Nevertheless, it has a possibility to be hypoelliptic with loss of more than one derivatives.

First, let us give a condition of non-hypoellipticity for the operator (1.1):
Theorem 1. In addition to the hypothesis (A.1), we assume that
(A.2) there exist positive numbers δ_{1} and ε such that

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 03740070), Ministry of Education, Science and Culture.

