J. Math. Soc. Japan Vol. 43, No. 3, 1991

On hypoellipticity for a certain operator with double characteristic

Dedicated to Professor Mutsuhide Matsumura on his 60th birthday

By Toshihiko HOSHIRO

(Received May 22, 1990) (Revised Oct. 3, 1990)

§1. Introduction and result.

In this paper, we consider C^{∞} -hypoellipticity for the operator

(1.1)
$$P = D_1^2 + D_2^2 + D_3^2 + x_3^2 D_4^2 + (f(x_1) - 1)D_4,$$
$$\left(D_j = -i\frac{\partial}{\partial x_j} \qquad j = 1, 2, 3, 4\right)$$

in neighborhoods ($\subset \mathbf{R}^4$) of the hypersurface $x_1=0$. Here we assume that the function $f(x_1)$ has the following properties:

(A.1) (i) f(0) = 0, $f(x_1) > 0$ if $x_1 \neq 0$. (ii) $f(x_1)$ is monotone in the intervals $[0, \delta)$ and $(-\delta, 0]$ for some $\delta > 0$.

Notice that the above operator (1.1) is a degenerate elliptic operator with double characteristic $\Sigma = \{(x, \xi) \in T^* \mathbb{R}^4 \setminus 0; \xi_1 = \xi_2 = \xi_3 = x_3 = 0\}$. Also notice that the canonical symplectic form $\sigma = \sum_j dx_j \wedge d\xi_j$ is of constant rank (=2) on $T_{\rho}\Sigma$ for any point $\rho \in \Sigma$. A. Grigis [3] treated a class of such operators after the important work of L. Boutet de Monvel [1]. He has given a condition which is necessary and sufficient for them to be hypoelliptic with loss of one derivative. Roughly speaking, his condition is that Melin's invariant (=subprincipal symbol +positive trace/2) does not take non-positive (real) values on the characteristic manifold Σ . For the operator (1.1), it becomes $0 < f(x_1) < 2$ if $\mathcal{G}_m f(x_1) = 0$ (*cf.* the condition (b) of théorème 0.1 in [3]). So, under the assumption (i) of (A.1), the operator (1.1) does not satisfy the condition on the hypersurface $x_1=0$. Nevertheless, it has a possibility to be hypoelliptic with loss of more than one derivatives.

First, let us give a condition of non-hypoellipticity for the operator (1.1):

THEOREM 1. In addition to the hypothesis (A.1), we assume that (A.2) there exist positive numbers δ_1 and ε such that

This research was partially supported by Grant-in-Aid for Scientific Research (No. 03740070), Ministry of Education, Science and Culture.