Compact Liouville surfaces

Dedicated to Professor Noboru Tanaka on his 60th birthday

By Kazuyoshi Kiyohara

(Received Feb. 13, 1990)
(Revised Oct. 1, 1990)

Introduction.

A (local) Liouville surface is by definition a surface which is equipped with a riemannian metric of the following form:

$$
g=\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right)\left(d x_{1}^{2}+d x_{2}^{2}\right)
$$

where $x=\left(x_{1}, x_{2}\right)$ is a coordinate system, and f_{i} is a function of the single variable $x_{i}(i=1,2)$. This type of metric is called a Liouville metric. A remarkable property of a Liouville surface is that the geodesic flow has the following first integral F. Let (x, ξ) be the canonical coordinate system on the cotangent bundle, and let

$$
E=\frac{1}{2} \frac{1}{f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)
$$

be the energy function associated with the riemannian metric g. If we put

$$
F=\frac{1}{f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)}\left(f_{2}\left(x_{2}\right) \xi_{1}^{2}-f_{1}\left(x_{1}\right) \xi_{2}^{2}\right),
$$

then it is easy to see that the Poisson bracket $\{E, F\}$ vanishes. The ellipsoid is a classical example of the Liouville surface, which is originally due to Jacobi (see Darboux [3] and Klingenberg [7] on this example and historical remarks).

The main purpose of this paper is to give a proper definition of compact Liouville surfaces, and to classify them. It is classically known that a Liouville surface is locally characterized as a 2 -dimensional riemannian manifold whose geodesic flow has a first integral which is a homogeneous polynomial of degree 2 on each fibre (cf. Darboux [3] Livre VI, Chapitre II). In § 1 we first review this fact. This leads us to the following definition: A compact Liouville surface (S, g, F) is a compact 2 -dimensional riemannian manifold (S, g) wnose geodesic flow has a first integral F which is fibrewise a homogeneous polynomial of degree 2, and which is not a constant multiple of the energy function E. We also assume that F does not come from a local Killing vector field, which means

