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Complete metrics of negative Ricci curvature
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Gao and Yau have constructed metrics of negative Ricci curvature on every
compact 3-manifold ([1], [2], [3]). They however used techniques peculiar to
3-manifolds and it is hard to see how their method is applicable to general
higher dimensional manifolds. In this paper we use simple triangulation argu-
ment to construct metrics of negative Ricci curvature on the complement of a
point, which will be a partial evidence for affirmative answer to the question
whether every manifold with dimension 13 can admit a metric with negative
Ricci curvature (Problem 24 of [4]).

THEOREM. For any connected closed manifold $M$ of dimension 1112 and a
Point $p$ of $M,$ $M\backslash \{p\}$ admits a complete metric of negative Ricci curvature.

Note that the conclusion is false if Ricci curvature is replaced by sectional
curvature. For example, take $M=RP^{n},$ $n\geqq 3$ .

\S 1. Preliminaries

LEMMA. Let $g$ and $\overline{g}$ be metrics on an $n$-manifold which are conformaly
related as $\overline{g}=e^{-2u}g$ for some smooth function $u$ . Then,

(1) $Ric(\overline{g})\leqq(n-2)\nabla^{2}u+(\Delta u)g+Ric(g)$ ,

where Hessian etc. in the right side are taken with respect to $g$ . Assume further
that $n\geqq 2,$ $u=u(t)$ for some other function $t$ and that $\ddot{u}=(d/dt)^{2}u\leqq 0$ . Then,

(2) $Ric(\overline{g})\leqq$ ti $|dt|^{2}g+\dot{u}((n-2)\nabla^{2}t+(\Delta t)g)+Ric(g)$ .

PROOF. Both inequalities follow immediately from the formula; $Ric(\overline{g})=$

$(n-2)\nabla^{2}u+(\Delta u)g+(n-2)(du\otimes du-|du|^{2}g)+Ric(g)$ .

PROPOSITION 1. Let $D$ be a $d$-dimensional disk in $R^{n}$ and $g$ a metric of $R^{n}$ .
Suppose $n>d,$ $n\geqq 2$ and $Ric(g)<0$ in a neighborhood of $\partial D$ . Then, there exists
another metric $\overline{g}$ such that $\overline{g}=g$ near $\partial D$ and $Ric(\overline{g})<0$ in a neighborhood of $D$ .

PROOF. Put $D(r)=\{(x, 0)\in R(f\cross R^{n-(}f;|x|<r\}\subset R^{n}$ , where $|x|=(\Sigma_{j=1}^{\iota l}(x_{j})^{2})^{1/2}$ .
We may assume $D=D(3)$ and $Ric(g)<0$ on $D\backslash D(1)$ .


