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§0. Introduction.

Let 2X be a space of loops on X and AX a space of free loops on X. We

will call a fibration 2Xc,AX5X a free loop fibration on X where n(w)=w(l)
for weAX. Let K, be a field of characteristic p. When is QX totally non-
homologous to zero in 4X with respect to a field K,?

We call a commutative algebra A(yi, -+, YOQK[x1, ==, x21/(01, =+, pm)
over a field K, is GCI algebra if p,, ---, pn is a regular sequence (see [4; p.
957) or m=0 where deg y, is odd and deg x; is even if p+#2. (see [5; Definition,
p. 893].) In [5], L. Smith has proved the following.

THEOREM 1 ([5; Theorem 4.1]). Let X be a simply connected space such
that H¥(X ; K,) is a GCI algebra. Then QX is totally non-homologous to zero in
AX with respect to K, if and only if H¥(X ; K,) is a free commutative algebra,
in which case H¥(AX ; K)=H*(X; K)QH*RQX ; K,) as an algebra.

In this paper, using methods which L. Smith has given in [5], we will
examine whether X is totally non-homologous to zero in AX with respect to
K, for cases where X=U(m+n)/U(m)xXU(n), Sp(m+n)/Sp(m) X Sp(n), Sp(n)/U(n),
SO(m+n)/SO(n), SUm~+n)/SU(n), Sp(m—+n)/Sp(n), €P(2) and p=2.

In order to obtain our results, we will consider the Eilenberg-Moore spectral
sequence of a fibre square
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where 4 is a diagonal map. Throughout this paper, F(X) means the above
fibre square.

For a space X, let T(X) denote a set of prime numbers p such that QX
is totally non-homologous to zero in 4X with respect to K,.



