On the mod p cohomology of the spaces of free loops on the Grassman and Stiefel manifolds

By Katsuhiko KURIBAYASHI

(Received June 7, 1989) (Revised June 18, 1990)

§ 0. Introduction.

Let ΩX be a space of loops on X and ΛX a space of free loops on X. We will call a fibration $\Omega X \hookrightarrow \Lambda X \xrightarrow{\pi} X$ a free loop fibration on X where $\pi(w) = w(1)$ for $w \in \Lambda X$. Let K_p be a field of characteristic p. When is ΩX totally non-homologous to zero in ΛX with respect to a field K_p ?

We call a commutative algebra $A(y_1, \dots, y_l) \otimes K_p[x_1, \dots, x_n]/(\rho_1, \dots, \rho_m)$ over a field K_p is GCI algebra if ρ_1, \dots, ρ_m is a regular sequence (see [4; p. 95]) or m=0 where deg y_i is odd and deg x_i is even if $p \neq 2$. (see [5; Definition, p. 893].) In [5], L. Smith has proved the following.

THEOREM 1 ([5; Theorem 4.1]). Let X be a simply connected space such that $H^*(X; \mathbf{K}_0)$ is a GCI algebra. Then ΩX is totally non-homologous to zero in ΛX with respect to \mathbf{K}_0 if and only if $H^*(X; \mathbf{K}_0)$ is a free commutative algebra, in which case $H^*(\Lambda X; \mathbf{K}_0) \cong H^*(X; \mathbf{K}_0) \otimes H^*(\Omega X; \mathbf{K}_0)$ as an algebra.

In this paper, using methods which L. Smith has given in [5], we will examine whether ΩX is totally non-homologous to zero in ΛX with respect to K_p for cases where $X=U(m+n)/U(m)\times U(n)$, $Sp(m+n)/Sp(m)\times Sp(n)$, Sp(n)/U(n), SO(m+n)/SO(n), SU(m+n)/SU(n), Sp(m+n)/Sp(n), CP(2) and $p\geq 2$.

In order to obtain our results, we will consider the Eilenberg-Moore spectral sequence of a fibre square

$$\begin{array}{ccc}
\Lambda X & \longrightarrow X \\
 & \downarrow \Delta & \text{(see [5])}, \\
 & X & \longrightarrow X \times X
\end{array}$$

where Δ is a diagonal map. Throughout this paper, $\mathcal{F}(X)$ means the above fibre square.

For a space X, let T(X) denote a set of prime numbers p such that QX is totally non-homologous to zero in AX with respect to K_p .