J. Math. Soc. Japan Vol. 43, No. 1, 1991

Isometrical identities for the Bergman and the Szegö spaces on a sector

By Hiroaki AIKAWA, Nakao HAYASHI and Saburou SAITOH

> (Received Oct. 9, 1989) (Revised March 5, 1990)

1. Introduction.

Let $\Delta(\alpha) = \{z ; |\arg z| < \alpha\}$. We consider the Bergman space

 $B_{\mathcal{A}(\alpha)} = \{F; F \text{ is analytic on } \mathcal{A}(\alpha), \|F\|_{B_{\mathcal{A}(\alpha)}} < \infty \},\$

where

$$\|F\|_{B_{\mathcal{A}(\alpha)}} = \left\{ \iint_{\mathcal{A}(\alpha)} |F(x+iy)|^2 dx dy \right\}^{1/2}.$$

In the case of $\alpha = \pi/4$ we showed that $||F||_{B_{d(\alpha)}}^2$ is represented as a series of weighted square integrals of the derivatives of the trace of F on the positive real axis ([2]). The proof included two different ingredients: an integral transform and a heat equation on the positive real axis. Both of them required rather deep and lengthy arguments which worked only in the case of $\alpha = \pi/4$.

Here we present a general result for $0 < \alpha < \pi/2$ by a completely different proof with minimum prerequisite knowledge. We shall show

THEOREM 1. Let $0 < \alpha < \pi/2$. If $F \in B_{\Delta(\alpha)}$, then

(1)
$$\iint_{\mathcal{A}(\alpha)} |F(x+iy)|^2 dx dy = \sin(2\alpha) \sum_{j=0}^{\infty} \frac{(2\sin\alpha)^{2j}}{(2j+1)!} \int_0^\infty x^{2j+1} |\partial^j f(x)|^2 dx,$$

where f stands for the trace of F on the positive real axis. Conversely, if f is a smooth function on the positive real axis for which the right hand side of (1) is finite, then f has an analytic continuation $F \in B_{\Delta(\alpha)}$ and (1) holds.

It is natural to consider a counterpart of Theorem 1 for the Szegö space

$$S_{\varDelta(\alpha)} = \Big\{ F; F \text{ is analytic on } \varDelta(\alpha), \sup_{|\theta| < \alpha} \int_0^\infty |F(re^{i\theta})|^2 dr < \infty \Big\},$$

which is normed by the square root of $\int_{\partial \mathcal{A}(\alpha)} |F(z)|^2 |dz|$ with F(z) being the nontangential boundary values of F on $\partial \mathcal{A}(\alpha)$. We shall prove