Vector valued invariants of prehomogeneous vector spaces

By Akihiko GYoJA

(Received Jan. 1990)

0. Introduction.

0.1. Let G be a finite group acting linearly on a finite dimensional vector space V over a finite field \boldsymbol{F}_{q}. Let $\left\{v_{0}, \cdots, v_{n}\right\}$ be a complete set of representatives of $V / G, V_{i}=G v_{i}, K_{i}=Z_{G}\left(v_{i}\right), R: G \rightarrow G L(M)$ a complex representation, and M_{i} the set of K_{i}-fixed vectors in M. For each $m \in M_{i}$, there exists one and only one M-valued function $R_{i, m}$ on V_{i} such that $R_{i, m}\left(v_{i}\right)=m$ and $R_{i, m}(g v)=$ $R(g) R_{i, m}(v)$ for $g \in G$ and $v \in V_{i}$. We extend $R_{i, m}$ by zero to the whole space V.
0.2. Our first problem is to know if the vector valued functions $R_{i, m}$ are similar in property to the complex powers of a relatively invariant polynomial function on a prehomogeneous vector space over the complex or real number field. (A rational representation of an algebraic group is called a prehomogeneous vector space, if the representation space has a Zariski open orbit.)

Let V^{\vee} be the dual G-module of V, and define, in the same way as above, $\left\{v_{0}^{\vee}, \cdots, v_{n}^{\vee},\right\}, M_{i}^{\prime}$, and M-valued functions $R_{i^{\prime}, m^{\prime}}^{\prime}\left(1 \leqq i^{\prime} \leqq n^{\prime}, m^{\prime} \in M_{i^{\prime}}^{\prime}\right)$ such that $R_{i^{\prime}, m^{\prime}}^{\prime}\left(g v^{\vee}\right)=R(g) R_{i^{\prime}, m^{\prime}}^{\prime}\left(v^{\vee}\right)$ for $g \in G$ and $v^{\vee} \in V^{\vee}$. As is easily seen, the Fourier transform of $R_{i, m}$ is a linear combination of these $R_{i^{\prime}, m}^{\prime}$'s. Provisionally in the introduction, let us assume that M_{0} and M_{0}^{\prime} are one dimensional and spanned by m_{0} and m_{0}^{\prime} respectively. Then the Fourier transform of $R_{0, m_{0}}$ is a linear combination of $R_{0, m_{0}^{\prime}}^{\prime}$ and $\left\{R_{i^{\prime}, m^{\prime}}^{\prime} \mid 1 \leqq i^{\prime} \leqq n^{\prime}, m^{\prime} \in M_{i^{\prime}}^{\prime}\right\}$. Hence if m_{0} and m_{0}^{\prime} are given, the coefficient $c(R)$ of $R_{0, m_{0}^{\prime}}^{\prime}$ is uniquely determined.

Our first problem is, more precisely, the evaluation of the coefficient $c(R)$. See (2.4) and (3.4) for our result, where we calculate the value of $c(R)$ for some examples. In many cases, we can say from the value of $c(R)$ that the Fourier transform of $R_{0, m_{0}}$ is, in fact, equal to $c(R) R_{0, m_{0}^{\prime}}^{\prime}$. See (2.6).
0.3. Our second problem is to understand character sum analogues of the Fourier transforms of complex powers of relative invariants of non-reductive prehomogeneous vector spaces in terms of the vector valued relative invariants

