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Let $\Lambda$ be the integral group ring of the infinite cyclic group $\langle t:\rangle$ . A $\Lambda-$

module $A$ is called a knot module if $A$ is finitely generated over $\Lambda$ and $r-1$

induces an automorphism of $A$ . The purpose of this paper is to generalize
results of E. S. Rapaport [8], R. H. Crowell [2] and D. W. Sumners [9] on knot
modules. M. Kervaire [5] showed that the $Z$-torsion part $T$ of a knot module
$A$ is a finite $\Lambda$-submodule. It follows from [3, vol. 2, p. 187] that $A$ splits as
an abelian group, $i.e.,$ $A\cong_{Z}F\oplus T$ , where $F=A/T$. The $Z$-torsion part of a
knot module has been completely determined. That is, a finite abelian group
$T$ is isomorphic to the $Z$-torsion part of some knot module if and only if the
number of factors isomorphic to $Z_{2}i$ in the 2-primary component of $T$ is not
equal to one for any positive integer $i$ (cf. [4], [6]). On the other hand, it
still remains open to characterize the $Z$-structure of a $Z$-torsion free knot module.
In this paper, we investigate two classes of $Z$-torsion free knot modules; one
is homogeneous and the other is completely decomposable. Using our result,
we can find an answer to Sumners’s question [9, p. 84] for models of Z-torsion
free knot modules.

Throughout this paper (unless otherwise specified), all groups will be Z-
torsion free abelian and all $\Lambda$-modules will be $Z$-torsion free knot modules.

1. Introduction.

A polynomial $f(t)$ of $\Lambda$ is primitive if all its coefficients are relatively prime.
Let $A$ be a $\Lambda$ -module. Then $A\otimes_{Z}Q$ is a finitely generated $\Gamma$-module, where
$\Gamma=\Lambda\otimes_{Z}Q$ . Therefore, since $\Gamma$ is a principal ideal domain, we have

$A\otimes_{Z}Q\cong_{\Gamma}\Gamma/(\lambda_{1})\oplus\cdots\oplus\Gamma/(\lambda_{k})$ .
In the above decomposition, one can take the $\lambda_{i}$ to be primitive elements of $\Lambda$

such that $\lambda_{i+1}|\lambda_{i}$ in $\Lambda,$ $i=1,$ $\cdots,$ $k-1$ . We call $\{\lambda_{i}\}_{i=1}^{k}$ the (rational) polynomial


