Homogeneity and complete decomposability of torsion free knot modules

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

By Katsuyuki YOSHIKAWA

(Received June 15, 1989) (Revised Dec. 25, 1989)

Let Λ be the integral group ring of the infinite cyclic group $\langle t: \rangle$. A Λ module A is called a knot module if A is finitely generated over Λ and t-1induces an automorphism of A. The purpose of this paper is to generalize results of E. S. Rapaport [8], R. H. Crowell [2] and D. W. Sumners [9] on knot modules. M. Kervaire [5] showed that the Z-torsion part T of a knot module A is a finite A-submodule. It follows from [3, vol. 2, p. 187] that A splits as an abelian group, i.e., $A \cong_{\mathbb{Z}} F \oplus T$, where F = A/T. The Z-torsion part of a knot module has been completely determined. That is, a finite abelian group T is isomorphic to the Z-torsion part of some knot module if and only if the number of factors isomorphic to Z_{2i} in the 2-primary component of T is not equal to one for any positive integer i (cf. [4], [6]). On the other hand, it still remains open to characterize the Z-structure of a Z-torsion free knot module. In this paper, we investigate two classes of Z-torsion free knot modules; one is homogeneous and the other is completely decomposable. Using our result, we can find an answer to Sumners's question [9, p. 84] for models of Z-torsion free knot modules.

Throughout this paper (unless otherwise specified), all groups will be Z-torsion free abelian and all Λ -modules will be Z-torsion free knot modules.

1. Introduction.

A polynomial f(t) of Λ is *primitive* if all its coefficients are relatively prime. Let A be a Λ -module. Then $A \otimes_{\mathbb{Z}} Q$ is a finitely generated Γ -module, where $\Gamma = \Lambda \otimes_{\mathbb{Z}} Q$. Therefore, since Γ is a principal ideal domain, we have

$$A \otimes_{\mathbf{Z}} Q \cong_{\Gamma} \Gamma/(\lambda_1) \oplus \cdots \oplus \Gamma/(\lambda_k)$$
.

In the above decomposition, one can take the λ_i to be primitive elements of Λ such that $\lambda_{i+1}|\lambda_i$ in Λ , $i=1, \dots, k-1$. We call $\{\lambda_i\}_{i=1}^k$ the (rational) polynomial