Homogeneity and complete decomposability of torsion free knot modules

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

By Katsuyuki Yoshikawa

(Received June 15, 1989)
(Revised Dec. 25, 1989)

Let Λ be the integral group ring of the infinite cyclic group $\langle t:\rangle$. A Λ module A is called a knot module if A is finitely generated over Λ and $t-1$ induces an automorphism of A. The purpose of this paper is to generalize results of E.S. Rapaport [8], R. H. Crowell [2] and D. W. Sumners [9] on knot modules. M. Kervaire [5] showed that the Z-torsion part T of a knot module A is a finite Λ-submodule. It follows from [3, vol. 2, p. 187] that A splits as an abelian group, i. e., $A \cong{ }_{z} F \oplus T$, where $F=A / T$. The Z-torsion part of a knot module has been completely determined. That is, a finite abelian group T is isomorphic to the Z-torsion part of some knot module if and only if the number of factors isomorphic to $Z_{2 i}$ in the 2-primary component of T is not equal to one for any positive integer i (cf. [4], [6]). On the other hand, it still remains open to characterize the Z-structure of a Z-torsion free knot module. In this paper, we investigate two classes of Z-torsion free knot modules; one is homogeneous and the other is completely decomposable. Using our result, we can find an answer to Sumners's question [9, p. 84] for models of Z-torsion free knot modules.

Throughout this paper (unless otherwise specified), all groups will be Z torsion free abelian and all Λ-modules will be Z-torsion free knot modules.

1. Introduction.

A polynomial $f(t)$ of Λ is primitive if all its coefficients are relatively prime. Let A be a Λ-module. Then $A \otimes_{z} Q$ is a finitely generated Γ-module, where $\Gamma=\Lambda \otimes_{z} Q$. Therefore, since Γ is a principal ideal domain, we have

$$
A \otimes_{z} Q \cong_{\Gamma} \Gamma /\left(\lambda_{1}\right) \oplus \cdots \oplus \Gamma /\left(\lambda_{k}\right) .
$$

In the above decomposition, one can take the λ_{i} to be primitive elements of Λ such that $\lambda_{i+1} \mid \lambda_{i}$ in $\Lambda, i=1, \cdots, k-1$. We call $\left\{\lambda_{i}\right\}_{i=1}^{k}$ the (rational) polynomial

