J. Math. Soc. Japan Vol. 43, No. 1, 1991

A characterization of the association schemes of Hermitian forms

By A. A. IVANOV and S. V. SHPECTOROV

(Received Jan. 19, 1989) (Revised Feb. 26, 1990)

Let $Y = (X, \{R_i\}_{0 \le i \le d})$ be an association scheme whose parameters coincide with those of the association scheme $\operatorname{Her}(d, q)$ of Hermitian forms in *d*-dimensional space over the field $GF(q^2)$. Suppose that every edge of the distanceregular graph $\Gamma = (X, R_1)$ is contained in a clique of size q. It is shown that if $d \ge 3$ then Y is isomorphic to $\operatorname{Her}(d, q)$. In the case d=2 a generalized quadrangle with the parameters (q, q^2) is reconstructed from Y.

1. Introduction.

The present paper is a continuation of [IS1] where the particular case q=2 was treated completely and some results concerning the general situation were proved. A detailed discussion of the schemes of Hermitian forms is contained in [BI], [BCN] and [IS1]. Here we give only the necessary definitions.

Let X be the set of all Hermitian forms (singular or nonsingular) in the space of dimension d over $GF(q^2)$ and R_0, R_1, \dots, R_d be the relations on X defined as follows

 $(x, y) \in R_i$ if and only if $\operatorname{rank}(x-y) = i, 0 \leq i \leq d$.

Then $Y = (X, \{R_i\}_{0 \le i \le d})$ is a (P and Q)-polynomial association scheme known as the scheme of Hermitian forms $\operatorname{Her}(d, q)$. The distance-regular graph $\Gamma = (X, R_1)$ related to the scheme $\operatorname{Her}(d, q)$ has the following parameters:

$$b_{i} = (q^{2i} - q^{2i})/(q+1),$$

$$c_{i} = (q^{i-1}(q^{i} - (-1)^{i}))/(q+1),$$

$$a_{i} = (q^{2i} - q^{i-1}(q^{i} - (-1)^{i}) - 1)/(q+1).$$
(1)

Apparently for the first time these facts were proved in [Wan].

The main result of the paper is the following.

THEOREM A. Let Γ be a distance-regular graph of diameter $d \ge 2$, whose