A characterization of the association schemes of Hermitian forms

By A. A. Ivanov and S. V. Shpectorov

(Received Jan. 19, 1989)
(Revised Feb. 26, 1990)

Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ be an association scheme whose parameters coincide with those of the association scheme $\operatorname{Her}(d, q)$ of Hermitian forms in d-dimensional space over the field $G F\left(q^{2}\right)$. Suppose that every edge of the distanceregular graph $\Gamma=\left(X, R_{1}\right)$ is contained in a clique of size q. It is shown that if $d \geqq 3$ then Y is isomorphic to $\operatorname{Her}(d, q)$. In the case $d=2$ a generalized quadrangle with the parameters $\left(q, q^{2}\right)$ is reconstructed from Y.

1. Introduction.

The present paper is a continuation of [IS1] where the particular case $q=2$ was treated completely and some results concerning the general situation were proved. A detailed discussion of the schemes of Hermitian forms is contained in [BI], [BCN] and [IS1]. Here we give only the necessary definitions.

Let X be the set of all Hermitian forms (singular or nonsingular) in the space of dimension d over $G F\left(q^{2}\right)$ and $R_{0}, R_{1}, \cdots, R_{d}$ be the relations on X defined as follows

$$
(x, y) \in R_{i} \quad \text { if and only if } \operatorname{rank}(x-y)=i, 0 \leqq i \leqq d
$$

Then $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ is a (P and Q)-polynomial association scheme known as the scheme of Hermitian forms $\operatorname{Her}(d, q)$. The distance-regular graph $\Gamma=$ (X, R_{1}) related to the scheme $\operatorname{Her}(d, q)$ has the following parameters:

$$
\begin{align*}
& b_{i}=\left(q^{2 d}-q^{2 i}\right) /(q+1), \\
& c_{i}=\left(q^{i-1}\left(q^{i}-(-1)^{i}\right)\right) /(q+1), \tag{1}\\
& a_{i}=\left(q^{2 i}-q^{i-1}\left(q^{i}-(-1)^{i}\right)-1\right) /(q+1) .
\end{align*}
$$

Apparently for the first time these facts were proved in [Wan].
The main result of the paper is the following.
Theorem A. Let Γ be a distance-regular graph of diameter $d \geqq 2$, whose

