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\S 1. Introduction.

In this paper, we study oriented tame links in the oriented 3-sphere $S^{3}$ . A
$\Delta$-unknotting operation is a local move on an oriented link diagram as indicated
in Figure 1.1.

Figure 1.1. $\Delta$ -unknotting operation.

In [8], H. Murakami and Y. Nakanishi introduced this notion and proved
that every knot can be transformed into a trivial knot by a finite number of
$\Delta$-unknotting operations. Let $K$ and $K’$ be oriented knots in $S^{3}$ . Tbe $\Delta$-Gordian
distance from $K$ to $K’$ , denoted by $d_{G}^{\Delta}(K, K’)$ , is the minimum number of $\Delta-$

unknotting operations which are necessary to deform a diagram of $K$ into that
of $K’$ . The $\Delta$-unknotting number of $K$, denoted by $u^{\Delta}(K)$ , is the $\Delta$-Gordian
distance from $K$ to a trivial knot. Then they showed the congruences $d_{G}^{\Delta}(K, K’)$

$\equiv Arf(K)-Arf(K’)$ (mod2) and $u^{\Delta}(K)\equiv Arf(K)$ (mod2) in [8], where $Arf(K)$

is the Arf invariant of a knot $K$ . Let $a_{i}(L)$ be the i-th coefficient of the Con-
way polynomial $\nabla_{L}(z)$ of a link $L$ . It is known that $a_{i}(L)$ has a relation to
the Casson’s invariant ([1], [3]). For the definition and fundamental properties
of the Conway polynomial, we refer to [4]. In this paper, we show the fol-
lowing:

THEOREM 1.1. Let $K$ and $K’$ be two knots wilh $d_{G}^{\Delta}(K, K’)=1$ . Then, $we$

have
$|a_{2}(K)-a_{2}(K’)|=1$ .

AS an immediate consequence of Theorem 1.1, we have the following:

COROLLARY 1.2. For any two knots $K$ and $K’$ , the difference $d_{G}^{\Delta}(K, K’)-$

$|a_{2}(K)-a_{2}(K’)|$ is a non-negative even integer. In particular the difference $u^{\Delta}(K)$


