Delta-unknotting operation and the second coefficient of the Conway polynomial

By Masae OKADA

(Received Nov. 22, 1989)

§1. Introduction.

In this paper, we study oriented tame links in the oriented 3-sphere S^3 . A Δ -unknotting operation is a local move on an oriented link diagram as indicated in Figure 1.1.

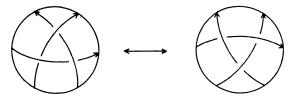


Figure 1.1. Δ -unknotting operation.

In [8], H. Murakami and Y. Nakanishi introduced this notion and proved that every knot can be transformed into a trivial knot by a finite number of \varDelta -unknotting operations. Let K and K' be oriented knots in S³. The \varDelta -Gordian distance from K to K', denoted by $d_G^4(K, K')$, is the minimum number of \varDelta unknotting operations which are necessary to deform a diagram of K into that of K'. The \varDelta -unknotting number of K, denoted by $u^d(K)$, is the \varDelta -Gordian distance from K to a trivial knot. Then they showed the congruences $d_G^d(K, K')$ $\equiv \operatorname{Arf}(K) - \operatorname{Arf}(K') \pmod{2}$ and $u^d(K) \equiv \operatorname{Arf}(K) \pmod{2}$ in [8], where $\operatorname{Arf}(K)$ is the Arf invariant of a knot K. Let $a_i(L)$ be the *i*-th coefficient of the Conway polynomial $\nabla_L(z)$ of a link L. It is known that $a_i(L)$ has a relation to the Casson's invariant ([1], [3]). For the definition and fundamental properties of the Conway polynomial, we refer to [4]. In this paper, we show the following:

THEOREM 1.1. Let K and K' be two knots with $d_G^4(K, K')=1$. Then, we have

$$|a_2(K) - a_2(K')| = 1.$$

As an immediate consequence of Theorem 1.1, we have the following:

COROLLARY 1.2. For any two knots K and K', the difference $d_G^d(K, K') - |a_2(K) - a_2(K')|$ is a non-negative even integer. In particular the difference $u^d(K)$