Necessary and sufficient conditions for optimality in nonlinear distributed parameter systems with variable initial state

By Apostolos PAPAGEORGIOU and Nikolaos S. PAPAGEORGIOU*

(Received Jan. 17, 1989) (Revised April 17, 1989)

1. Introduction.

In this paper, we consider a nonlinear distributed control system, with time varying control constraints and an initial condition which is not determined by an a priori given function, but instead it is assumed to belong to a certain specified set (Lions [5] calls them "systems with insufficient data"). The cost criterion is a general convex integral functional.

Using the Dubovitski-Milyutin formalism, we are able to obtain a necessary and sufficient condition for the existence of an optimal solution. A very comprehensive presentation of the Dubovitski-Milyutin theory can be found in the monograph of Girsanov [3]. Our result extends Theorem 2.1 of Lions [5], since we allow for nonlinear dynamics and a nonquadratic cost criterion.

2. Preliminaries.

The mathematical setting is the following. Let $T = [0, b] \subseteq \mathbf{R}_+$ (a bounded time interval) and H a separable Hilbert space. Also let $X \subseteq H$ be a subspace of H carrying the structure of a separable reflexive Banach space, which imbeds continuously and densely into H. Identifying H with its dual (pivot space), we have $X \subseteq H \subseteq X^*$, with all embeddings being continuous and dense. Such a triple (X, H, X^*) of spaces is sometimes called "Gelfand triple" or "spaces in normal position". By $\|\cdot\|$ (resp. $|\cdot|, \|\cdot\|_*$) we will denote the norm of X (resp. of H, X^*). Also by (\cdot, \cdot) we will denote the inner product in H and by $\langle \cdot, \cdot \rangle$ the duality brackets for the pair (X, X^*) . The two are compatible in the sense that if $x \in X \subseteq H$ and $h \in H \subseteq X^*$, we have $(x, h) = \langle x, h \rangle$. Also let Y be another separable Banach space modelling the control space. By $P_{fc}(Y)$ we will denote the nonempty, closed, convex subsets of Y.

The optimal control problem under consideration is the following:

* Research supported by N.S.F. Grant D.M.S.-8802688.