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Introduction.

In the present paper we aim to establish a method of finite element ap-
proximations by which we can determine the modulus of quadrilaterals on
Riemann surfaces (cf. Mizumoto and Hara [15] for other treatment). Our method
matches the abstract definition of Riemann surfaces, and also will offer a new
technique of high practical use in numerical calculation not only for the case
of Riemann surfaces but also for the case of plane domains.

Let $\Omega$ be a simply connected subdomain of a Riemann surface $W$ whose
closure 9 is a compact bordered subregion of $W$ . We assume that the boundary
$\partial\Omega$ of $\Omega$ is a piecewise analytic curve. We assign four points $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$

on $\partial\Omega$ (in positive orientation $w$ . $r$ . $t$ . $\Omega$ ), and the two opposite arcs $C_{0}$ (from $p_{1}$

to $p_{2}$ ) and $C_{1}$ (from $p_{3}$ to $p_{4}$ ). Then we say that a quadrilateral $Q$ with opposite
sides $C_{0}$ and $C_{1}$ is given.

We can conformally map the domain $\Omega$ onto a rectangular domain $R=\{w|0<$

${\rm Re} w<1,0<{\rm Im} w<M\}$ by a function $w=f(p)$ so that $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ are maPPed
to $iM,$ $0,1$ and $1+iM$ respectively. Let & be the class of all continuous func-
tions $v$ on 9 with $v=0$ on $C_{0}$ and $v=1$ on $C_{1}$ which satisfy some restricted
conditions (see \S 2.1). Then the modulus $M(Q)=M$ of the quadrilateral $Q$ is
uniquely determined by $Q$ , and is given by

$M(Q)=D(u)= \min^{D(v)}$ $(u={\rm Re} f(p))$ ,

where by $D(v)$ we denote the Dirichlet integral of $v$ . Next we assign the two
opposite arcs $\tilde{C}_{0}$ (from $p_{2}$ to $p_{3}$ ) and $\tilde{C}_{1}$ (from $p_{4}$ to $p_{1}$ ) on $\partial\Omega$ . Then a quadri-

lateral $\tilde{Q}$ with the opposite sides $\tilde{C}_{0}$ and $\tilde{C}_{1}$ is defined. We can easily see that
$M(Q)=1/M(\tilde{Q})$ . By making use of this relation Gaier [9] presented a method
to obtain upper and lower bounds for the modulus $M(Q)$ in the case of some
restricted domain $\Omega$ ( $e.g$ . a lattice domain, etc.) by the finite difference and
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