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Introduction.

Let H be a real Hilbert space with norm denoted by |-|| and inner product
by ¢, >. For any teR, let A(t): D[A(t)]—H be a maximal monotone operator.
We consider the evolution equation
0.1 w'()+Au(t) 0.

In the sequel, we denote by (C;)icr the closure in H of the domain D[A(?)].
It is well known that C, is convex (cf. e.g. [5]).

Under several different types of technical assumptions, it is possible to define
for any s€R and any x=C; a unique “weak” solution u(t) of (0.1) on [s, 4-co[
such that u(s)=x. In general, u is not differentiable and is constructed by
some approximation procedure (cf. e.g. [1, 2, 4, 5, 6, 14, 17, 20]).

In all the cases in which this construction is possible, u is given by the
formula

0.2) Vi=s, u(t) = E(s, Dx

where E(s, t): C;—H is defined for t=s and satisfies the following properties
(0.3) VseR,VxeC,, Vizs, E(s, tx = C,.

(0.4) VseR,VxeC,, V.2t =5, E(s, t5)x = E(ty, t:)E(s, t)x.

(0.5) VseR, Vizs, Vxe(Cs, Vyely, |E(s, )yx—E(s, Hyll < llx—y]l.

Let J be a closed interval of R. We say that a function u=C(J, H) is a solution
of (0.1) on J if u satisfies

0.6) VseR, Vie], t=s, u(t) = E(s, t)u(s).

We say that w is a strong solution of (0.1) on J if ucW'YK, H) for any

compact interval KC Jand for almost all te K, u(t)e D[ A(¥)] and u’(t)e — A@®)u(t).
In this paper, we are mainly interested in the case where A(f) is periodic,



