Quasi-periodicity of bounded solutions to some periodic evolution equations

Dedicated to Professor Hiroshi Fujita on the occasion of his sixtieth birthday

By Alain HARAUX and Mitsuharu OTANI

(Received March 27, 1989)

Introduction.

Let *H* be a real Hilbert space with norm denoted by $\|\cdot\|$ and inner product by \langle , \rangle . For any $t \in \mathbf{R}$, let $A(t): D[A(t)] \rightarrow H$ be a maximal monotone operator. We consider the evolution equation

$$(0.1) u'(t) + A(t)u(t) \supseteq 0.$$

In the sequel, we denote by $(C_t)_{t \in \mathbb{R}}$ the closure in H of the domain D[A(t)]. It is well known that C_t is *convex* (cf. e.g. [5]).

Under several different types of technical assumptions, it is possible to define for any $s \in \mathbb{R}$ and any $x \in C_s$ a unique "weak" solution u(t) of (0.1) on $[s, +\infty[$ such that u(s)=x. In general, u is not differentiable and is constructed by some approximation procedure (cf. e.g. [1, 2, 4, 5, 6, 14, 17, 20]).

In all the cases in which this construction is possible, u is given by the formula

$$(0.2) \qquad \forall t \ge s, \qquad u(t) = E(s, t)x$$

where $E(s, t): C_s \rightarrow H$ is defined for $t \ge s$ and satisfies the following properties

$$(0.3) \quad \forall s \in \mathbf{R}, \ \forall x \in C_s, \ \forall t \ge s, \qquad E(s, t)x \in C_t.$$

$$(0.4) \quad \forall s \in \mathbf{R}, \ \forall x \in C_s, \ \forall t_2 \geq t_1 \geq s, \qquad E(s, t_2)x = E(t_1, t_2)E(s, t_1)x.$$

 $(0.5) \quad \forall s \in \mathbf{R}, \ \forall t \geq s, \ \forall x \in C_s, \ \forall y \in C_s, \qquad \|E(s, t)x - E(s, t)y\| \leq \|x - y\|.$

Let J be a closed interval of **R**. We say that a function $u \in C(J, H)$ is a solution of (0.1) on J if u satisfies

(0.6)
$$\forall s \in \mathbf{R}, \forall t \in J, t \geq s, \quad u(t) = E(s, t)u(s).$$

We say that u is a strong solution of (0.1) on J if $u \in W^{1,1}(K, H)$ for any compact interval $K \subset J$ and for almost all $t \in K$, $u(t) \in D[A(t)]$ and $u'(t) \in -A(t)u(t)$.

In this paper, we are mainly interested in the case where A(t) is periodic,