J. Math. Soc. Japan Vol. 42, No. 2, 1990

Notes on C^0 sufficiency of quasijets

Dedicated to Professor Masahisa Adachi on his 60th birthday

By Satoshi KOIKE

(Received Aug. 15, 1988) (Revised March 20, 1989)

Let $\mathcal{E}_{[k]}(n, 1)$ be the set of C^k function germs: $(\mathbf{R}^n, 0) \rightarrow (\mathbf{R}, 0)$ for $k=1, 2, \dots, \infty, \omega$, and let $\mathcal{H}(n, 1)$ be the set of holomorphic function germs: $(\mathbf{C}^n, 0) \rightarrow (\mathbf{C}, 0)$. If for two function germs $f, g \in \mathcal{E}_{[k]}(n, 1)$ (resp. $\mathcal{H}(n, 1)$) there exists a local homeomorphism $\sigma: (\mathbf{R}^n, 0) \rightarrow (\mathbf{R}^n, 0)$ (resp. $\sigma: (\mathbf{C}^n, 0) \rightarrow (\mathbf{C}^n, 0)$) such that $f=g \circ \sigma$, we say that f is C^0 -equivalent to g and write $f \sim g$. We shall not distinguish between germs and their representatives.

Consider the polynomial function $f: (\mathbf{R}^2, 0) \rightarrow (\mathbf{R}, 0)$ defined by

 $f(x, y) = x^3 + 3xy^{20} + y^{29}.$

Then we see that

$$x^{3}+3xy^{20} \xrightarrow{(i)} x^{3}+3xy^{20}+y^{29} \xrightarrow{(ii)} x^{3}+y^{29}.$$

Here we interpret the above equivalences as follows (see [6], Example 4.3 also):

(i) Put $w=j^{21}f(0)=x^3+3xy^{20}$. Then w is C⁰-equivalent to f. This follows from the Kuiper-Kuo theorem (see Lemma 5 in § 3).

(ii) Put $z=x^3+y^{29}$. Then z is C⁰-equivalent to f. Since z is weighted homogeneous of type (1/3, 1/29) with a finite codimension and the weight of the term $3xy^{20}$ is 1/3+20/29>1 (see V.I. Arnol'd [1]).

In the complex case, the equivalence (i) does not hold. For w is weighted homogeneous of type (1/3, 1/30) with an isolated singularity and the weight of the term y^{29} is 29/30 < 1. Furthermore $y^{29} \notin \mathfrak{M}(\partial w/\partial x, \partial w/\partial y)$. Therefore w is not C^{0} -equivalent to $w+y^{29}=f$ (see M. Suzuki [16] or A. N. Varčenko [18]). (Of course, we can also see this directly by considering the C^{0} -type of $w^{-1}(0)$ and $f^{-1}(0)$, as germs at $0 \in \mathbb{C}^{2}$.) Even in the real case, the equivalence (i) does not hold, if we replace plus by minus (i. e. $w=x^{3}-3xy^{20}$).

PROBLEM. Is there a unified discription for explaining the above interpretations?

This research was partially supported by Grant-in-Aid for Scientific Research (No. 63740040, 62540047, 63540043), Ministry of Education, Science and Culture.