Notes on C^{0} sufficiency of quasijets
 Dedicated to Professor Masahisa Adachi on his 60th birthday

By Satoshi KoIke

(Received Aug. 15, 1988)
(Revised March 20, 1989)

Let $\mathcal{E}_{[k]}(n, 1)$ be the set of C^{k} function germs: $\left(\boldsymbol{R}^{n}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ for $k=1,2, \cdots, \infty, \omega$, and let $\mathscr{H}(n, 1)$ be the set of holomorphic function germs: $\left(\boldsymbol{C}^{n}, 0\right) \rightarrow(\boldsymbol{C}, 0)$. If for two function germs $f, g \in \mathcal{E}_{[k]}(n, 1)$ (resp. $\mathscr{A}(n, 1)$) there exists a local homeomorphism $\sigma:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{n}, 0\right)$ (resp. $\sigma:\left(\boldsymbol{C}^{n}, 0\right) \rightarrow\left(\boldsymbol{C}^{n}, 0\right)$) such that $f=g \circ \sigma$, we say that f is C^{0}-equivalent to g and write $f \sim g$. We shall not distinguish between germs and their representatives.

Consider the polynomial function $f:\left(\boldsymbol{R}^{2}, 0\right) \rightarrow(\boldsymbol{R}, 0)$ defined by

$$
f(x, y)=x^{3}+3 x y^{20}+y^{29} .
$$

Then we see that

$$
x^{3}+3 x y^{20} \stackrel{(\mathrm{i})}{\sim} x^{3}+3 x y^{20}+y^{29} \stackrel{(\mathrm{ii})}{\sim} x^{3}+y^{29} .
$$

Here we interpret the above equivalences as follows (see [6], Example 4.3 also) :
(i) Put $w=j^{21} f(0)=x^{3}+3 x y^{20}$. Then w is C^{0}-equivalent to f. This follows from the Kuiper-Kuo theorem (see Lemma 5 in §3).
(ii) Put $z=x^{3}+y^{29}$. Then z is C^{0}-equivalent to f. Since z is weighted homogeneous of type ($1 / 3,1 / 29$) with a finite codimension and the weight of the term $3 x y^{20}$ is $1 / 3+20 / 29>1$ (see V.I. Arnol'd [1]).

In the complex case, the equivalence (i) does not hold. For w is weighted homogeneous of type $(1 / 3,1 / 30)$ with an isolated singularity and the weight of the term y^{29} is $29 / 30<1$. Furthermore $y^{29} \notin \mathfrak{M}(\partial w / \partial x, \partial w / \partial y)$. Therefore w is not C^{0}-equivalent to $w+y^{29}=f$ (see M. Suzuki [16] or A. N. Varčenko [18]). (Of course, we can also see this directly by considering the C^{0}-type of $w^{-1}(0)$ and $f^{-1}(0)$, as germs at $0 \in \boldsymbol{C}^{2}$.) Even in the real case, the equivalence (i) does not hold, if we replace plus by minus (i.e. $w=x^{3}-3 x y^{20}$).

Problem. Is there a unified discription for explaining the above interpretations?

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 63740040, 62540047, 63540043), Ministry of Education, Science and Culture.

