J. Math. Soc. Japan Vol. 42, No. 2, 1990

Consistency of Menas' conjecture

By Yo MATSUBARA

(Received March 7, 1989)

In this paper we will prove the consistency of the following conjecture of Menas [8] with ZFC. Menas' conjecture: For every regular uncountable cardinal κ and λ a cardinal $>\kappa$, if X is a stationary subset of $\mathcal{D}_{\kappa}\lambda$ then X splits into $\lambda^{<\kappa}$ many disjoint stationary subsets. We will prove the consistency of the conjecture by showing that it holds in L, the class of constructible sets.

Baumgartner and Taylor [1] have shown the consistency of the failure of Menas' conjecture with ZFC. Thus we can conclude that Menas' conjecture is independent of ZFC. Throughout this paper we let κ denote a regular uncountable cardinal and λ a cardinal $>\kappa$.

Baumgartner and DiPrisco proved that if 0^* does not exist then every stationary subset of $\mathcal{P}_{\kappa}\lambda$ splits into λ many disjoint stationary subsets. In [6], we have proved the following, strengthening their result slightly using generic ultrapowers.

THEOREM 1. If there is a stationary subset of $\mathcal{P}_{\kappa}\lambda$ which does not split into λ many disjoint stationary subsets, then b* exists for every bounded subset b of λ .

The proof of Theorem 1 was based on the following two results.

THEOREM 2 (Foreman [2]). If I is a countably complete λ^+ -saturated ideal on $\mathcal{P}_{\mathbf{x}}\lambda$ then I is precipitous.

THEOREM 3 ([6]). If there is a precipitous ideal on $\mathcal{D}_{\kappa}\lambda$ then b^* exists for every bounded subset b of λ .

Let $NS(\kappa, \lambda)$ denote the nonstationary ideal on $\mathscr{D}_{\kappa}\lambda$. Thus $NS(\kappa, \lambda)$ is a κ complete normal idea. If X is a stationary subset of $\mathscr{D}_{\kappa}\lambda$ which does not split
into λ many disjoint stationary subsets then $NS(\kappa, \lambda) | X$ is a λ -saturated κ -complete normal ideal on $\mathscr{D}_{\kappa}\lambda$ where

 $NS(\kappa, \lambda) | X = \{ Y \subseteq \mathcal{P}_{\kappa} \lambda \colon Y \cap X \in NS(\kappa, \lambda) \}.$

Thus by Theorem 2, the existence of a stationary subset of $\mathscr{D}_{\kappa}\lambda$ which does not split into λ many disjoint stationary subsets implies the existence of a precipitous ideal on $\mathscr{D}_{\kappa}\lambda$.