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Consistency of Menas’ conjecture
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In this paper we will prove the consistency of the following conjecture of
Menas [8] with ZFC. Menas’ conjecture: For every regular uncountable
cardinal rc and $\lambda$ a cardinal $>\kappa$, if $X$ is a stationary subset of $P_{\kappa}\lambda$ then $X$ sPlits
into $\lambda<\kappa$ many disjoint stationary subsets. We will prove the consistency of the
conjecture by showing that it holds in $L$ , the class of constructible sets.

Baumgartner and Taylor [1] have shown the consistency of the failure of Menas’
conjecture with ZFC. Thus we can conclude that Menas’ conjecture is inde-
pendent of ZFC. Throughout this PaPer we let $\kappa$ denote a regular uncountable
cardinal and $\lambda$ a cardinal $>\kappa$ .

Baumgartner and DiPrisco proved that if $0^{\#}$ does not exist then every sta-
tionary subset of $P_{\kappa}\lambda$ splits into $\lambda$ many disjoint stationary subsets. In [6], we
have proved the following, strengthening their result slightly using generic
ultrapowers.

THEOREM 1. If there is a stationary subset of $P_{\kappa}\lambda$ which does not split into
$\lambda$ many disjoint stationary subsets, then $b^{\#}$ exists for every bounded subset $b$ of $\lambda$ .

The proof of Theorem 1 was based on the following two results.

THEOREM 2 (Foreman [2]). If I is a countably compleie $\lambda^{+}$-saturated ideal
on $P_{\kappa}\lambda$ then I is PreciPitous.

THEOREM 3 ([6]). If there is a precipitous ideal on $P_{\kappa}\lambda$ then $b^{\#}$ exists for
every bounded subset $b$ of $\lambda$ .

Let NS($\kappa$, $\lambda$) denote the nonstationary ideal on $P_{\kappa}\lambda$ . Thus $NS(\kappa, \lambda)$ is a $\kappa-$

complete normal idea. If $X$ is a stationary subset of $P_{\kappa}\lambda$ which does not split
into $\lambda$ many disjoint stationary subsets then $NS$( $\kappa,$

$\lambda$) $|X$ is a $\lambda$-saturated $\kappa$-com-
plete normal ideal on $P_{\kappa}\lambda$ where

NS(\kappa , $\lambda$) $|X=\{Y\subseteqq P_{\kappa}\lambda:Y\cap X\in NS(\kappa, \lambda)\}$ .
Thus by Theorem 2, the existence of a stationary subset of $P_{\kappa}\lambda$ which does not
split into $\lambda$ many disjoint stationary subsets implies the existence of a precipitous
ideal on $P_{\kappa}\lambda$ .


